Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 028501    DOI: 10.1088/1674-1056/adecf9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Memristor-based analog noise correction for infrared sensors

Xiao Huang(黄潇)†, Peiwen Tong(童霈文)†, Qingjiang Li(李清江), Tuo Ma(马拓), Shuo Han(韩硕), Wei Wang(王伟)‡, and Yi Sun(孙毅)§
College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract  Sensor noise is a critical factor that degrades the performance of image processing systems. In traditional computing systems, noise correction is implemented in the digital domain, resulting in redundant latency and power consumption overhead in the analog-to-digital conversion. In this work, we propose an analog-domain image correction architecture based on a proposed small-scale UNet, which implements a compact noise correction network within a one-transistor-one-memristor (1T1R) array. The statistical non-idealities of the fabricated 1T1R array (e.g., device variability) are rigorously incorporated into the network's training and inference simulations. This correction network architecture leverages memristors for conducting multiply-accumulate operations aimed at rectifying non-uniform noise, defective pixels (stuck-at-bright/dark), and exposure mismatch. Compared to systems without correction, the proposed architecture achieves up to 50.13 % improvement in recognition accuracy while demonstrating robust tolerance to memristor device-level errors. The proposed system achieves a 2.13-fold latency reduction and three orders of magnitude higher energy efficiency compared to conventional architecture. This work establishes a new paradigm for advancing the development of low-power, low-latency, and high-precision image processing systems.
Keywords:  infrared sensor noise      memristor      analog-domain neuromorphic computing      correction network      one-transistor-one-memristor (1T1R) array  
Received:  15 April 2025      Revised:  12 June 2025      Accepted manuscript online:  08 July 2025
PACS:  85.35.-p (Nanoelectronic devices)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  31.30.i  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2024YFA1208800) and the National Natural Science Foundation of China (Grant Nos. 62404253, 62304254, and U23A20322).
Corresponding Authors:  Wei Wang, Yi Sun     E-mail:  wangwei_esss@nudt.edu.cn;sunyi12@nudt.edu.cn

Cite this article: 

Xiao Huang(黄潇), Peiwen Tong(童霈文), Qingjiang Li(李清江), Tuo Ma(马拓), Shuo Han(韩硕), Wei Wang(王伟), and Yi Sun(孙毅) Memristor-based analog noise correction for infrared sensors 2026 Chin. Phys. B 35 028501

[1] Irie K, McKinnon A E, Unsworth K and Woodhead I M 2008 IEEE Trans. Circuits Syst. Video Technol. 18 28
[2] Bu F, Yao D, Yang Y and Cao W 2023 Third International Conference on Optics and Image Processing, April 7–9, 2023, Xi’an, China, pp. 121–127
[3] Chen S, Lou Z, Chen D and Shen G 2018 Adv. Mater. 30 1705400
[4] DuW, Li C, Huang Y, Zou J, Luo L, Teng C, Kuo H C,Wu J andWang Z 2022 IEEE Electron Dev. Lett. 43 406
[5] Liu K, Zhang T, Dang B, Bao L, Xu L, Cheng C, Yang Z, Huang R and Yang Y 2022 Nat. Electron. 5 761
[6] Sun Y, Li Q, Zhu X, Liao C, Wang Y, Li Z, Liu S, Xu H and Wang W 2023 Adv. Intell. Syst. 5 2200196
[7] Dang B, Liu K, Wu X, Yang Z, Xu L, Yang Y and Huang R 2023 Adv. Mater. 35 2204844
[8] Zhou G, Li J, Song Q, Wang L, Ren Z, Sun B, Hu X, Wang W, Xu G, Chen X, Cheng L, Zhou F and Duan S 2023 Nat. Commun. 14 8489
[9] Zhan Y, Ding M, Xiao F and Zhang X 2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation, December 14–17, 2011, Wuhan, China, pp. 31–34
[10] Dabov K, Foi A, Katkovnik V and Egiazarian K 2007 IEEE Trans. Image Process. 16 2080
[11] Burger H C, Schuler C J and Harmeling S 2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16–21, 2012, Providence, Rhode Island, pp. 2392–2399
[12] Zhang K, Zuo W, Chen Y, Meng D and Zhang L 2017 IEEE Trans. Image Process. 26 3142
[13] Xia Q and Yang J J 2019 Nat. Mater. 18 309
[14] Ielmini D and Wong H S P 2018 Nat. Electron. 1 333
[15] Ronneberger O, Fischer P and Brox T 2015 Medical Image Computing and Computer-Assisted Intervention, October 5–9, 2015, Munich Germany, pp. 234–241
[16] Chen J Y, Liu X, Du L L, Song B and Sun X B 2024 Acta Optica Sinica 44 375 (in Chinese)
[17] Posso J, Kieffer H, Menga N, Hlimi O, Tarris S, Guerard H, Bois G, Couderc M and Jenn E 2025 Real-Time Semantic Segmentation of Aerial Images Using an Embedded U-Net: A Comparison of CPU, GPU, and FPGA Workflows
[18] Liu Z, Tang J, Gao B, Yao P, Li X, Liu D, Zhou Y, Qian H, Hong B and Wu H 2020 Nat. Commun. 11 4234
[1] An artificial synapse capable of regulating signal transmission speed in a neuromorphic network
Jingru Sun(孙晶茹), Xiaosong Li(李晓崧), Yichuang Sun(孙义闯), Zining Xiong(熊子宁), and Jiqi He(何计奇). Chin. Phys. B, 2026, 35(1): 010501.
[2] Dynamic analysis and DNA coding-based image encryption of memristor synapse-coupled hyperchaotic IN-HNN network
Shuang Zhao(赵双), Yunzhen Zhang(张云贞), Xiangjun Chen(陈湘军), Bin Gao(高彬), and Chengjie Chen(陈成杰). Chin. Phys. B, 2026, 35(1): 010502.
[3] Dynamics analysis and DSP implementation of the Rulkov neuron model with memristive synaptic crosstalk
Yichen Bi(毕毅晨), Jun Mou(牟俊), Herbert Ho-Ching Iu, Nanrun Zhou(周南润), Santo Banerjee, and Suo Gao(高锁). Chin. Phys. B, 2026, 35(1): 010504.
[4] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[5] A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵). Chin. Phys. B, 2025, 34(5): 050503.
[6] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[7] Discrete neuron models and memristive neural network mapping: A comprehensive review
Fei Yu(余飞), Xuqi Wang(王许奇), Rongyao Guo(郭荣垚), Zhijie Ying(应志杰), Yan He(何燕), and Qiong Zou(邹琼). Chin. Phys. B, 2025, 34(12): 120501.
[8] Synchronization of a fractional-order chaotic memristive system and its application to secure image transmission
Lamia Chouchane, Hamid Hamiche, Karim Kemih, Ouerdia Megherbi, and Karim Labadi. Chin. Phys. B, 2025, 34(12): 120509.
[9] Artificial synapse based on Co3O4 nanosheets for high-accuracy pattern recognition
Ying Li(李颖), Xiaofan Zhou(周晓凡), Jiajun Guo(郭家俊), Tong Chen(陈通), Xiaohui Zhang(张晓辉), Xia Xiao(肖夏), Guangyu Wang(王光宇), Mehran Khan Alam, Qi Zhang(张琪), and Liqian Wu(武力乾). Chin. Phys. B, 2025, 34(12): 128101.
[10] A sound-sensitive neuron incorporating a memristive-ion channel
Xin-Lin Song(宋欣林), Ge Zhang(张鬲), and Fei-Fei Yang(杨飞飞). Chin. Phys. B, 2025, 34(12): 120502.
[11] Brain-inspired memristive pooling method for enhanced edge computing
Wenbin Guo(郭文斌), Zhe Feng (冯哲), Haochen Wang (王昊辰), Zhihao Lin(蔺志豪), Jianxun Zou(邹建勋), Zuyu Xu(徐祖雨), Yunlai Zhu(朱云来), Yuehua Dai (代月花), and Zuheng Wu (吴祖恒). Chin. Phys. B, 2025, 34(12): 127301.
[12] Memristor-coupled dynamics and synchronization in two bi-neuron Hopfield neural networks
Fangyuan Li(李芳苑), Haigang Tang(唐海刚), Yunzhen Zhang(张云贞), Bocheng Bao(包伯成), Hany Hassanin, and Lianfa Bai(柏连发). Chin. Phys. B, 2025, 34(12): 128701.
[13] Sol-gel synthesis and nonvolatile resistive switching behaviors of wurtzite phase ZnO nanofilms
Zhi-Qiang Yu(余志强), Jin-Hao Jia(贾金皓), Mei-Lian Ou(欧梅莲), Tang-You Sun(孙堂友), and Zhi-Mou Xu(徐智谋). Chin. Phys. B, 2025, 34(12): 127302.
[14] Memristive effect on a Hindmarsh-Rose neuron
Fei Gao(高飞), Xiangcheng Yu(于相成), Yue Deng(邓玥), Fang Yuan(袁方), Guangyi Wang(王光义), and Tengfei Lei(雷腾飞). Chin. Phys. B, 2025, 34(12): 120504.
[15] Dynamical behavior of ring-star neural networks with small-world characteristics
Minglin Ma(马铭磷), Zhiyi Yuan(袁芷依), Umme Kalsoom, Weizheng Deng(邓为政), and Shaobo He(贺少波). Chin. Phys. B, 2025, 34(10): 100502.
No Suggested Reading articles found!