| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Second-order correlated interference with multi-wavelength thermal-light beams |
| De-Sheng Wang(王德胜)1, Yi-Ning Zhao(赵一宁)1, Lingxin Kong(孔令鑫)1, Su-Heng Zhang(张素恒)2, Chong Wang(王翀)1, Cheng Ren(任承)1, Yuehua Su(苏跃华)1, and De-Zhong Cao(曹德忠)1,† |
1 Department of Physics, Yantai University, Yantai 264005, China; 2 College of Physics Science & Technology, Hebei University, Baoding 071002, China |
|
|
|
|
Abstract A method for correlating thermal light over a wide spectral range is proposed. A multi-wavelength pseudothermal source, prepared by projecting laser beams of multiple wavelengths (650 nm, 635 nm, 532 nm, and 473 nm) onto a moving thin ground glass plate, is employed in a double-slit interference experiment. The ground glass plate induces random phase differences between light beams of different wavelengths passing through it. This initial random phase difference significantly influences the high-order intensity correlation functions of multi-wavelength thermal beams. Experimentally, second-order correlated interference patterns, including subwavelength interference, of pseudothermal beams with different wavelengths are observed in the intensity correlation measurements. This method facilitates applications of correlated thermal photons in quantum information processing and quantum imaging.
|
Received: 17 September 2025
Revised: 04 November 2025
Accepted manuscript online: 06 November 2025
|
|
PACS:
|
42.25.Hz
|
(Interference)
|
| |
42.50.St
|
(Nonclassical interferometry, subwavelength lithography)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62105278 and 11674273) and the Natural Science Foundation of Shandong Province (Grant No. ZR2023MA015). |
Cite this article:
De-Sheng Wang(王德胜), Yi-Ning Zhao(赵一宁), Lingxin Kong(孔令鑫), Su-Heng Zhang(张素恒), Chong Wang(王翀), Cheng Ren(任承), Yuehua Su(苏跃华), and De-Zhong Cao(曹德忠) Second-order correlated interference with multi-wavelength thermal-light beams 2026 Chin. Phys. B 35 024201
|
[1] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [2] Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7 [3] Zhang Z, You C, Magana-Loaiza O S, Fickler R, Le on-Montiel R de J, Torres J P, Humble T S, Liu S, Xia Y and Zhuang Q 2024 Adv. Opt. Photonics 16 60 [4] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337 [5] Guo Y X, Xu X X, Chen Z P, Zhou Y G, Liu B, He H X, Li Y Y and Xie J N 2024 Chin. Phys. Lett. 41 014201 [6] Aspect A, Dalibard J and Roger G 1982 Phys. Rev. Lett. 49 1804 [7] Ou Z Y and Mandel L 1988 Phys. Rev. Lett. 61 50 [8] Shih Y H and Alley C O 1988 Phys. Rev. Lett. 61 2921 [9] Ekert A K 1991 Phys. Rev. Lett. 67 661 [10] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [11] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733 [12] D’Angelo M, Chekhova M V and Shih Y 2001 Phys. Rev. Lett. 87 013602 [13] Bin Q, Wu Y and Lu X Y 2021 Phys. Rev. Lett. 127 073602 [14] Ma S, Li X, Ren Y, Xie J and Li F 2021 Phys. Rev. Res. 3 043020 [15] Gou C, Hu X and Wang F 2022 Phys. Rev. A 106 063718 [16] Liu C, Huang J F and Tian L 2022 Sci. China Phys. Mech. Astron. 66 220311 [17] Jiang S Y, Zou F, Wang Y, Huang J F, Xu X W and Liao J Q 2023 Opt. Express 31 15697 [18] Wei H, Tang J and Deng Y 2024 New J. Phys. 26 123024 [19] Zou F, Li Y and Liao J Q 2023 New J. Phys. 25 043027 [20] Domenico G D, Pearl S, Karnieli A, Trajtenberg-Mills S, Juwiler I, Eisenberg H S and Arie A 2022 Opt. Express 30 21535 [21] Kang Y H, Lin Z P, Yang J Q, Wang Y, Song J, Yang Z B and Xia Y 2023 Opt. Express 31 42976 [22] Cao D Z, Zhang X Z, Wang C, Ren C, Zhang J, Li Z, Zhang S H and Wang K 2023 Phys. Rev. A 107 022417 [23] Migliore A and Messina A 2022 Ann. Phys. 534 2200304 [24] Mostafavi F 2024 arXiv:2405.16793[physics.optics] [25] Hong S, Rehman J, Kim Y S, Cho Y W, Lee S W, Jung H, Moon S, Han S W and Lim H T 2021 Nat. Commun. 12 5211 [26] Hodgson H, Zhang Y, England D and Sussman B 2023 Appl. Phys. Lett. 122 34001 [27] Kim S, Stohr J, Rotermund F and Ham B S 2024 arXiv:2404.00496 [quant-ph] [28] Zanforlin U, Lupo C, Connolly P W R, Kok P, Buller G S and Huang Z 2022 Nat. Commun. 13 5373 [29] Mostafavi F, Hong M, Dawkins R B, Ferdous J, Baum I, Jin R B, Lon- Montiel R de J, You C and Magana-Loaiza O S 2025 Appl. Phys. Rev. 12 011001 [30] He Z, Zhang Y, Tong X, Li L and Wang L V 2023 Nat. Commun. 14 2441 [31] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601 [32] Bennink R S, Bentley S J, Boyd R W and Howell J C 2004 Phys. Rev. Lett. 92 033601 [33] Chen X H, Wu W, Meng S Y and Li M F 2014 Chin. Phys. B 23 090701 [34] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429 [35] Zhai Y H, Chen X H, Zhang D and Wu L A 2005 Phys. Rev. A 72 043805 [36] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600 [37] Scarcelli G, Valencia A and Shih Y H 2004 Europhys. Lett. 68 618 [38] Xiong J, Cao D Z, Huang F, Li H G, Sun X J and Wang K 2005 Phys. Rev. Lett. 94 173601 [39] Luo S, Zhou Y, Zheng H, Xu W, Liu J, Chen H, He Y, Zhang S, Li F and Xu Z 2021 Opt. Express 29 30094 [40] Li W and Wang Z 2022 Opt. Express 30 12684 [41] Ye Z, Hou W, Ding C X, Men X J, He R J, Zhao J, Wang H B, Xiong J and Wang K 2025 Laser Photon. Rev. 19 2401610 [42] Zhang D J, Wu S, Li H J, Wang H B, Xiong J and Wang K 2017 Sci. Rep. 7 17372 [43] Zhao T M, Zhang H, Yang J, Sang Z R, Jiang X, Bao X H and Pan J W 2014 Phys. Rev. Lett. 112 103602 [44] Lake D P, Mitchell M, Sanders B C and Barclay P E 2020 Nat. Commun. 11 2208 [45] Kim H, Kwon O and Moon H S 2019 Sci. Rep. 9 18375 [46] Deng Y H, Wang H, Ding X, Duan Z C, Qin J, Chen M C, He Y, He Y M, Li J P, Li Y H, Peng L C, Matekole E S, Byrnes T, Schneider C, Kamp M, Wang D W, Dowling J P, Hofling S, Lu C Y, Scully M O and Pan J W 2019 Phys. Rev. Lett. 123 080401 [47] Kim H, Kim D, Park J and Moon H S 2020 Photon. Res. 8 1491 [48] Bennett A J, Patel R B, Nicoll C A, Ritchie D A and Shields A J 2009 Nat. Phys. 5 715 [49] Zhai L, Nguyen G N, Spinnler C, Ritzmann J, Lobl M C, Wieck A D, Ludwig A, Javadi A and Warburton R J 2022 Nat. Nanotechnol. 17 829 [50] Dangel C, Schmitt J, Bennett A J, Muller K and Finley J J 2022 Phys. Rev. Appl. 18 054005 [51] Hoffet F, Lowinski J, Heller L, Padron-Brito A and de Riedmatten H 2024 PRX Quantum 5 030305 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|