Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024203    DOI: 10.1088/1674-1056/adf4ad
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-sensitivity phase estimation with a two-mode squeezed coherent state based on a Mach-Zehnder interferometer

Pengxiang Ruan(阮鹏祥)1, Jun Liu(刘俊)1,†, Chenlu Li(李晨露)1, Qingli Jing(荆庆丽)1, Mingming Zhang(张明明)1, and Dong-Xu Chen(陈东旭)2,‡
1 School of Science, Jiangsu University of Science and Technology, ZhenJiang 212003, China;
2 Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China
Abstract  A scheme is proposed based on a Mach-Zehnder interferometer with high phase sensitivity, utilizing a two-mode squeezed coherent state, generated by four-wave mixing, as input. The phase sensitivity of this scheme easily surpasses the Heisenberg limit when intensity difference detection is applied. Under phase-matching conditions, the quantum Cramér-Rao bound significantly exceeds the Heisenberg limit. Additionally, the scheme exhibits robustness against photon loss. When compared with the modified SU(1,1) interferometer with two coherent state inputs, this approach demonstrates superior measurement sensitivity, evaluated through various detection methods and the quantum Cramér-Rao bound. This work holds potential applications in quantum metrology.
Keywords:  two-mode squeezed coherent state      phase estimation      quantum Cramér-Rao bound      Heisenberg limit  
Received:  21 May 2025      Revised:  18 July 2025      Accepted manuscript online:  28 July 2025
PACS:  42.50.-p (Quantum optics)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12104190, 12104189, 12204312), the Natural Science Foundation of Jiangsu Province (Grant No. BK20210874), General project of Natural Science Research in Colleges And Universities of Jiangsu Province (Grant No. 20KJB140008), the Jiangxi Provincial Natural Science Foundation (Grant Nos. 20224BAB211014 and 20232BAB201042), and Key Laboratory of TianQin Project (Sun Yat-sen University).
Corresponding Authors:  Jun Liu, Dong-Xu Chen     E-mail:  junliu@just.edu.cn;chendx@sru.edu.cn

Cite this article: 

Pengxiang Ruan(阮鹏祥), Jun Liu(刘俊), Chenlu Li(李晨露), Qingli Jing(荆庆丽), Mingming Zhang(张明明), and Dong-Xu Chen(陈东旭) High-sensitivity phase estimation with a two-mode squeezed coherent state based on a Mach-Zehnder interferometer 2026 Chin. Phys. B 35 024203

[1] Rarity J G, Tapster P R, Jakeman E, Larchuk T, Campos R A, Teich M C and Saleh B E A 1990 Phys. Rev. Lett. 65 1348
[2] Luo W, Wu C, Du Y, Zhao C, Yu M, Zhu P, Zhang K and Xu P 2024 Chin. Phys. B 33 100305
[3] Wu D, Li X, Wang L L, Zhang J S, Chen W, Wang Y, Wang H J, Li J G, Yin X J, Wu Y D, An J M and Song Z G 2023 Chin. Phys. B 32 010305
[4] Hudelist F, Kong J, Liu C, Jing J, Ou Z and Zhang W 2014 Nat. Commun. 5 3049
[5] Nagata T, Okamoto R, O’Brien J L, Sasaki K and Takeuchi S 2007 Science 316 726
[6] Kacprowicz M, Demkowicz-Dobrzański R, Wasilewski W, Banaszek K and Walmsley I 2010 Nat. Photon. 4 357
[7] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J and Mavalvala N 2008 Nat. Phys. 4 472
[8] Genoni M G, Olivares S, Brivio D, Cialdi S, Cipriani D, Santamato A, Vezzoli S and Paris M G 2012 Phys. Rev. A 85 043817
[9] Zhang H, Ye W, Wei C, Xia Y, Chang S, Liao Z and Hu L 2021 Phys. Rev. A 103 013705
[10] Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C and Peng K 2020 Phys. Rev. Lett. 124 173602
[11] Liu J,Wang Y, Zhang M,Wang J,Wei D and Gao H 2020 Opt. Express 28 39443
[12] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[13] Liu P, Wang P, Yang W, Jin G and Sun C 2017 Phys. Rev. A 95 023824
[14] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733
[15] Dowling J P 2008 Contemporary Physics 49 125
[16] Liu J, Liu W, Li S, Wei D, Gao H and Li F 2017 Photon. Res. 5 617
[17] Wang G, Li Z, Qin X, Yang Z, Li X, Wu X, Zhou Y and Chen Y 2024 Optics & Laser Technology 176 110984
[18] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[19] Ge W, Jacobs K, Eldredge Z, Gorshkov A V and Foss-Feig M 2018 Phys. Rev. Lett. 121 043604
[20] Seshadreesan K P, Anisimov P M, Lee H and Dowling J P 2011 New J. Phys. 13 083026
[21] Caves C M 1981 Phys. Rev. D 23 1693
[22] Ou Z 1996 Phys. Rev. Lett. 77 2352
[23] Haldar S, Barge P J, Xiao X Q and Lee H 2023 AVS Quantum Science 5 034401
[24] Xiao M, Wu L A and Kimble H J 1987 Phys. Rev. Lett. 59 278
[25] Grangier P, Roger G and Aspect A 1986 Europhys. Lett. 1 173
[26] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[27] Berry D W, Higgins B L, Bartlett S D, Mitchell M W, Pryde G J and Wiseman H M 2009 Phys. Rev. A 80 052114
[28] Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754
[29] Hall M J, Berry D W, Zwierz M and Wiseman H M 2012 Phys. Rev. A 85 041802
[30] Zhang J D, Li C, Hou L and Wang S 2025 Chin. Phys. B 34 010304
[31] Li D, Yuan C H, Ou Z and Zhang W 2014 New J. Phys. 16 073020
[32] Liu J, Shao T, Wang Y, Zhang M, Hu Y, Chen D and Wei D 2023 Opt. Express 31 27735
[33] Liu J, Shao T, Li C, Zhang M, Hu Y, Chen D and Wei D 2024 Chin. Phys. B 33 014203
[34] Wang Y, Li S, Hu Y, Zhang M and Liu J 2022 Journal of Physics Communications 6 035004
[35] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[36] Yu J, Qin Y, Qin J, Wang H, Yan Z, Jia X and Peng K 2020 Phys. Rev. Appl. 13 024037
[37] Ataman S, Preda A and Ionicioiu R 2018 Phys. Rev. A 98 043856
[38] Liu J, Yu Y, Wang C, Chen Y, Wang J, Chen H, Wei D, Gao H and Li F 2020 New J. Phys. 22 013031
[39] Zhang H, Ye W, Wei C, Liu C, Liao Z and Hu L 2021 Phys. Rev. A 103 052602
[40] Liu S, Lou Y and Jing J 2019 Phys. Rev. Lett. 123 113602
[41] Zhang J D, You C, Li C and Wang S 2021 Phys. Rev. A 103 032617
[42] Ou Z 2012 Phys. Rev. A 85 023815
[43] Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601
[44] Sparaciari C, Olivares S and Paris M G A 2016 Phys. Rev. A 93 023810
[45] Gong Q K, Li D, Yuan C H, Qu Z Y and Zhang W P 2017 Chin. Phys. B 26 094205
[46] JarzynaMand Demkowicz-Dobrzański R 2012 Phys. Rev. A 85 011801
[47] Takeoka M, Seshadreesan K P, You C, Izumi S and Dowling J P 2017 Phys. Rev. A 96 052118
[48] Preda A and Ataman S 2019 Phys. Rev. A 99 053810
[49] Zhang J D, You C and Wang S 2022 Opt. Express 30 43143
[50] Ma X, You C, Adhikari S, Matekole E S, Glasser R T, Lee H and Dowling J P 2018 Opt. Express 26 18492
[1] Bayesian phase difference estimation based on single-photon projective measurement
Xu-Hao Yu(余旭豪), Ying Wei(韦颖), Ran Yang(杨然), Wen-Hui Song(宋文慧), Yingning Miao(缪应宁), Wei Zhou(周唯), Xinhui Li(李新慧), Xiaoqin Gao(高小钦), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2025, 34(7): 070305.
[2] Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states
Jian-Dong Zhang(张建东), Chuang Li(李闯), Lili Hou(侯丽丽), and Shuai Wang(王帅). Chin. Phys. B, 2025, 34(1): 010304.
[3] Enhanced measurement precision with continuous interrogation during dynamical decoupling
Jun Zhang(张军), Peng Du(杜鹏), Lei Jing(敬雷), Peng Xu(徐鹏), Li You(尤力), and Wenxian Zhang(张文献). Chin. Phys. B, 2024, 33(3): 030301.
[4] Measuring small longitudinal phase shifts via weak measurement amplification
Kai Xu(徐凯), Xiao-Min Hu(胡晓敏), Meng-Jun Hu(胡孟军), Ning-Ning Wang(王宁宁), Chao Zhang(张超), Yun-Feng Huang(黄运锋), Bi-Heng Liu(柳必恒), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2024, 33(3): 030602.
[5] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[6] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[7] Super-sensitive phase estimation with coherent boosted light using parity measurements
Lan Xu(许兰), Qing-Shou Tan(谭庆收). Chin. Phys. B, 2018, 27(1): 014203.
[8] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[9] A scheme for Sagnac-effect quantum enhancement with Fock state light input
Kun Chen(陈坤), Shu-Xin Chen(陈树新), De-Wei Wu(吴德伟), Chun-Yan Yang(杨春燕), Qiang Miao(苗强). Chin. Phys. B, 2017, 26(9): 094212.
[10] Photon statistical properties of photon-added two-mode squeezed coherent states
Xu Xue-Fen (许雪芬), Wang Shuai (王帅), Tang Bin (唐斌). Chin. Phys. B, 2014, 23(2): 024206.
[11] Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal
He Zhi (贺志), Yao Chun-Mei (姚春梅). Chin. Phys. B, 2014, 23(11): 110601.
[12] Quantum metrology
Xiang Guo-Yong (项国勇), Guo Guang-Can (郭光灿). Chin. Phys. B, 2013, 22(11): 110601.
No Suggested Reading articles found!