| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High-sensitivity phase estimation with a two-mode squeezed coherent state based on a Mach-Zehnder interferometer |
| Pengxiang Ruan(阮鹏祥)1, Jun Liu(刘俊)1,†, Chenlu Li(李晨露)1, Qingli Jing(荆庆丽)1, Mingming Zhang(张明明)1, and Dong-Xu Chen(陈东旭)2,‡ |
1 School of Science, Jiangsu University of Science and Technology, ZhenJiang 212003, China; 2 Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China |
|
|
|
|
Abstract A scheme is proposed based on a Mach-Zehnder interferometer with high phase sensitivity, utilizing a two-mode squeezed coherent state, generated by four-wave mixing, as input. The phase sensitivity of this scheme easily surpasses the Heisenberg limit when intensity difference detection is applied. Under phase-matching conditions, the quantum Cramér-Rao bound significantly exceeds the Heisenberg limit. Additionally, the scheme exhibits robustness against photon loss. When compared with the modified SU(1,1) interferometer with two coherent state inputs, this approach demonstrates superior measurement sensitivity, evaluated through various detection methods and the quantum Cramér-Rao bound. This work holds potential applications in quantum metrology.
|
Received: 21 May 2025
Revised: 18 July 2025
Accepted manuscript online: 28 July 2025
|
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
| |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
| |
42.50.St
|
(Nonclassical interferometry, subwavelength lithography)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12104190, 12104189, 12204312), the Natural Science Foundation of Jiangsu Province (Grant No. BK20210874), General project of Natural Science Research in Colleges And Universities of Jiangsu Province (Grant No. 20KJB140008), the Jiangxi Provincial Natural Science Foundation (Grant Nos. 20224BAB211014 and 20232BAB201042), and Key Laboratory of TianQin Project (Sun Yat-sen University). |
Corresponding Authors:
Jun Liu, Dong-Xu Chen
E-mail: junliu@just.edu.cn;chendx@sru.edu.cn
|
Cite this article:
Pengxiang Ruan(阮鹏祥), Jun Liu(刘俊), Chenlu Li(李晨露), Qingli Jing(荆庆丽), Mingming Zhang(张明明), and Dong-Xu Chen(陈东旭) High-sensitivity phase estimation with a two-mode squeezed coherent state based on a Mach-Zehnder interferometer 2026 Chin. Phys. B 35 024203
|
[1] Rarity J G, Tapster P R, Jakeman E, Larchuk T, Campos R A, Teich M C and Saleh B E A 1990 Phys. Rev. Lett. 65 1348 [2] Luo W, Wu C, Du Y, Zhao C, Yu M, Zhu P, Zhang K and Xu P 2024 Chin. Phys. B 33 100305 [3] Wu D, Li X, Wang L L, Zhang J S, Chen W, Wang Y, Wang H J, Li J G, Yin X J, Wu Y D, An J M and Song Z G 2023 Chin. Phys. B 32 010305 [4] Hudelist F, Kong J, Liu C, Jing J, Ou Z and Zhang W 2014 Nat. Commun. 5 3049 [5] Nagata T, Okamoto R, O’Brien J L, Sasaki K and Takeuchi S 2007 Science 316 726 [6] Kacprowicz M, Demkowicz-Dobrzański R, Wasilewski W, Banaszek K and Walmsley I 2010 Nat. Photon. 4 357 [7] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J and Mavalvala N 2008 Nat. Phys. 4 472 [8] Genoni M G, Olivares S, Brivio D, Cialdi S, Cipriani D, Santamato A, Vezzoli S and Paris M G 2012 Phys. Rev. A 85 043817 [9] Zhang H, Ye W, Wei C, Xia Y, Chang S, Liao Z and Hu L 2021 Phys. Rev. A 103 013705 [10] Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C and Peng K 2020 Phys. Rev. Lett. 124 173602 [11] Liu J,Wang Y, Zhang M,Wang J,Wei D and Gao H 2020 Opt. Express 28 39443 [12] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602 [13] Liu P, Wang P, Yang W, Jin G and Sun C 2017 Phys. Rev. A 95 023824 [14] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733 [15] Dowling J P 2008 Contemporary Physics 49 125 [16] Liu J, Liu W, Li S, Wei D, Gao H and Li F 2017 Photon. Res. 5 617 [17] Wang G, Li Z, Qin X, Yang Z, Li X, Wu X, Zhou Y and Chen Y 2024 Optics & Laser Technology 176 110984 [18] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222 [19] Ge W, Jacobs K, Eldredge Z, Gorshkov A V and Foss-Feig M 2018 Phys. Rev. Lett. 121 043604 [20] Seshadreesan K P, Anisimov P M, Lee H and Dowling J P 2011 New J. Phys. 13 083026 [21] Caves C M 1981 Phys. Rev. D 23 1693 [22] Ou Z 1996 Phys. Rev. Lett. 77 2352 [23] Haldar S, Barge P J, Xiao X Q and Lee H 2023 AVS Quantum Science 5 034401 [24] Xiao M, Wu L A and Kimble H J 1987 Phys. Rev. Lett. 59 278 [25] Grangier P, Roger G and Aspect A 1986 Europhys. Lett. 1 173 [26] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330 [27] Berry D W, Higgins B L, Bartlett S D, Mitchell M W, Pryde G J and Wiseman H M 2009 Phys. Rev. A 80 052114 [28] Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754 [29] Hall M J, Berry D W, Zwierz M and Wiseman H M 2012 Phys. Rev. A 85 041802 [30] Zhang J D, Li C, Hou L and Wang S 2025 Chin. Phys. B 34 010304 [31] Li D, Yuan C H, Ou Z and Zhang W 2014 New J. Phys. 16 073020 [32] Liu J, Shao T, Wang Y, Zhang M, Hu Y, Chen D and Wei D 2023 Opt. Express 31 27735 [33] Liu J, Shao T, Li C, Zhang M, Hu Y, Chen D and Wei D 2024 Chin. Phys. B 33 014203 [34] Wang Y, Li S, Hu Y, Zhang M and Liu J 2022 Journal of Physics Communications 6 035004 [35] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [36] Yu J, Qin Y, Qin J, Wang H, Yan Z, Jia X and Peng K 2020 Phys. Rev. Appl. 13 024037 [37] Ataman S, Preda A and Ionicioiu R 2018 Phys. Rev. A 98 043856 [38] Liu J, Yu Y, Wang C, Chen Y, Wang J, Chen H, Wei D, Gao H and Li F 2020 New J. Phys. 22 013031 [39] Zhang H, Ye W, Wei C, Liu C, Liao Z and Hu L 2021 Phys. Rev. A 103 052602 [40] Liu S, Lou Y and Jing J 2019 Phys. Rev. Lett. 123 113602 [41] Zhang J D, You C, Li C and Wang S 2021 Phys. Rev. A 103 032617 [42] Ou Z 2012 Phys. Rev. A 85 023815 [43] Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601 [44] Sparaciari C, Olivares S and Paris M G A 2016 Phys. Rev. A 93 023810 [45] Gong Q K, Li D, Yuan C H, Qu Z Y and Zhang W P 2017 Chin. Phys. B 26 094205 [46] JarzynaMand Demkowicz-Dobrzański R 2012 Phys. Rev. A 85 011801 [47] Takeoka M, Seshadreesan K P, You C, Izumi S and Dowling J P 2017 Phys. Rev. A 96 052118 [48] Preda A and Ataman S 2019 Phys. Rev. A 99 053810 [49] Zhang J D, You C and Wang S 2022 Opt. Express 30 43143 [50] Ma X, You C, Adhikari S, Matekole E S, Glasser R T, Lee H and Dowling J P 2018 Opt. Express 26 18492 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|