| TOPICAL REVIEW — Multiferroicity and multicaloric effects |
Prev
|
|
|
Magnetic refrigerants for ultralow temperatures: A mini-review |
| Ziyu W. Yang(杨子煜)1,3, Shuai Tang(唐帅)1,2, Guangkai Zhang(张广凯)1, Ciyu Qin(秦慈宇)1,2, Maocai Pi(皮茂材)1,2, Xubin Ye(叶旭斌)1, Zhao Pan(潘昭)1, Yu-Jia Zeng(曾昱嘉)3, and Youwen Long(龙有文)1,2,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China |
|
|
|
|
Abstract Accessing the milli-Kelvin regime is increasingly important for next-generation quantum technologies and deep-space observations. Among established cryogenic techniques, adiabatic demagnetization refrigeration (ADR) is distinctive for its all-solid-state design, low vibration, and intrinsic gravity independence. Here we present a materials-centered review of ADR refrigerants, connecting classical thermodynamics to modern quantum many-body behavior. Beyond hydrated paramagnetic salts, dense rare-earth oxides and correlated-disorder ceramics, we highlight emerging quantum-engineered refrigerants, including geometrically frustrated magnets, and quantum-critical systems. In these materials, suppressing long-range order and tailoring low-energy excitations redistribute spin entropy into the sub-Kelvin window, enabling large and reversible entropy changes at the lowest accessible temperatures. We discuss the central trade-offs among volumetric entropy density, thermal transport, and magnetic ordering, and outline possible design rules for staged ADR architectures.
|
Received: 14 November 2025
Revised: 26 November 2025
Accepted manuscript online: 27 November 2025
|
|
PACS:
|
07.20.Mc
|
(Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)
|
| |
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
| |
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
| Fund: This work was supported by the National Key R&D Program of China (Grant No. 2021YFA1400300), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515111009), and the National Natural Science Foundation of China (Grant Nos. 12425403, 12261131499, and 52273298). |
Corresponding Authors:
Youwen Long
E-mail: ywlong@iphy.ac.cn
|
Cite this article:
Ziyu W. Yang(杨子煜), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Ciyu Qin(秦慈宇), Maocai Pi(皮茂材), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Yu-Jia Zeng(曾昱嘉), and Youwen Long(龙有文) Magnetic refrigerants for ultralow temperatures: A mini-review 2026 Chin. Phys. B 35 020701
|
[1] Chen Z, Shen J, Zhao Y N, Zheng W, Yang L, Lu Y, Liu J and Li Z 2025 Appl. Therm. Eng. 265 125562 [2] Shirron P J 2014 Cryogenics 62 130 [3] Shirron P J, KimballMO, Ottens R S, James B L, Canavan E R, DiPirro M J, Bialas T A, Sneiderman G A, Kilbourne C A, Porter F S, Kelley R L, Barnstable K R, Fujimoto R, Takei Y and Yoshida S 2025 J. Astron. Telesc. Inst. 11 042015 [4] Jiang C, Li C, Jin H and Cui W 2023 Sci. Bull. 68 2709 [5] Zu H, Dai W and De Waele A 2022 Cryogenics 121 103390 [6] Debye P 1926 Ann. Phys. 386 1154 [7] Giauque W 1927 J. Am. Chem. Soc. 49 1864 [8] Giauque W and MacDougall D 1933 Phys. Rev. 43 768 [9] Khramov Y A 1985 Sov. J. Low Temp. Phys. 11 672 [10] De Haas W, Wiersma E and Kramers H 1934 Physica 1 1 [11] Heer C, Barnes C and Daunt J 1953 Phys. Rev. 91 412 [12] Heer C, Barnes C and Daunt J 1954 Rev. Sci. Instrum. 25 1088 [13] Zimmerman J, McNutt J and Bohm H 1962 Cryogenics 2 153 [14] Rosenblum S, Sheinberg H, and Steyert W 1976 Cryogenics 16 245 [15] Wikus P, Canavan E, Heine S T, Matsumoto K and Numazawa T 2014 Cryogenics 62 150 [16] Treu T, Klinger M, Oefele N, Telang P, Jesche A and Gegenwart P 2024 J. Phys.: Condens. Matter 37 013001 [17] Xu Q F, Wu R T, Long L S and Zheng L S 2025 Acc. Chem. Res. 58 2898 [18] Barclay J A, Rosebblum S S and Steyert W A 1976 Cryogenics 16 539 [19] Fisher R, Hornung E, Brodale G and Giauque W 1973 J. Chem. Phys. 58 5584 [20] Vilches O and Wheatley J 1966 Rev. Sci. Instrum. 37 819 [21] Kleinhans M, Eibensteiner K, Leiner J C, Spallek J, Regnat A and Pfleiderer C 2023 Phys. Rev. Appl. 19 014038 [22] Barclay J A 1988 Adv. Cryog. Eng. 33 719 [23] Brasiliano D A P, Duval J M, Marin C, Bichaud E, Brison J P, Zhitomirsky M and Luchier N 2020 Cryogenics 105 103002 [24] McMichael R D, Ritter J J and Shull R D 1993 J. Appl. Phys. 73 6946 [25] Numazawa T, Kamiya K, Shirron P, DiPirro M and Matsumoto K 2006 AIP Conf. Proc. 850 1579 [26] Morozov O A, Korableva S L, Nurtdinova L A, Kyashkin V M, Popov P A, Klimovitskii A E, Pudovkin M S and Semashko V V 2023 Opt. Mater. 137 113490 [27] DiPirro M, Canavan E, Shirron P and Tuttle J 2004 Cryogenics 44 559 [28] Yang Z W, Zhang J, Lu D, Zhang X, Zhao H, Cui H, Zeng Y J and Long Y 2023 Inorg. Chem. 62 5282 [29] Yang Z, Ge J Y, Ruan S, Cui H and Zeng Y J 2021 J. Mater. Chem. C 9 6754 [30] Yang Z, Zhang H, Bai M, Li W, Huang S, Ruan S and Zeng Y J 2020 J. Mater. Chem. C 8 11866 [31] Wang B, Liu X, Hu F, Wang J T, Xiang Y, Sun P, Wang J, Sun J, Zhao T and Mo Z 2024 J. Am. Chem. Soc. 146 35016 [32] Wang Y, Xiang J, Zhang L, Gong J, Li W, Mo Z and Shen J 2024 J. Am. Chem. Soc. 146 3315 [33] Xu Q, Liu B, Ye M, Zhuang G, Long L and Zheng L 2022 J. Am. Chem. Soc. 144 13787 [34] Xu P, Ma Z, Wang P, Wang H and Li L 2021 Mater. Today Phys. 20 100470 [35] Palacios E, Rodríguez-Velamazán J A, Evangelisti M, McIntyre G J, Lorusso G, Visser D, De Jongh L and Boatner L A 2014 Phys. Rev. B 90 214423 [36] Song Z M, Zhao N, Ge H, Li T T, Yang J, Wang L, Fu Y, Zhang Y Z, Wang S M, Mei J W, He H, Guo S, Wu L S and Sheng J M 2023 Phys. Rev. B 107 125126 [37] Yang Z, Qin S, Ye X, Liu Z, Guo Y, Cui H, Ge J Y, Li H, Long Y and Zeng Y J 2022 Sci. China: Phys., Mech. Astron. 65 247011 [38] Wang Y, Xiang J, Zhang L, Gong J, Li W, Mo Z and Shen J 2024 J. Am. Chem. Soc. 146 3315 [39] Zhang Y, Hao W, Lin J, Li H Fand Li L 2024 Acta Mater. 272 119946 [40] Yang Z W, Qin S, Zhang J, Lu D, Zhao H, Kang C, Cui H, Long Y and Zeng Y J 2022 Mater. Today Phys. 27 100810 [41] Song F Y, Liu X Y, Dong C, Zhou J, Shi X L, Han Y Y, Ling L S, Ren H F, Yuan S L, Wang S, Xiang J S, Sun P J and Tian Z M 2025 Chin. Phys. Lett. 42 120706 [42] Zhang Y, Li A, Hao W, Li H F and Li L 2025 Acta Mater. 292 121033 [43] Zhang Y, Na Y, Hao W, Gottschall T and Li L 2024 Adv. Funct. Mater. 34 2409061 [44] Yang ZW, Zhang J, Liu B, Zhang X, Lu D, Zhao H, Pi M, Cui H, Zeng Y J, Pan Z, Shen Y, Li S and Long Y 2024 Adv. Sci 11 2306842 [45] Xu Q F, Zhao P, Chen M T, Wu R T, Dai W, Long L S and Zheng L S 2025 Adv. Mater. 37 2414226 [46] Zhitomirsky M 2003 Phys. Rev. B 67 104421 [47] Koskelo E C, Mukherjee P, Liu C, Sackville Hamilton A C, Ong H S, Castelnovo C, Zhitomirsky M and Dutton S E 2023 PRX Energy 2 033005 [48] Manvell A S, Dunstan M A, Gracia D, Hruby J, Kubus M, McPherson J N, Palacios E,Weihe H, Hill S and Schnack J 2025 J. Am. Chem. Soc. 147 7597 [49] Sharples J W, Collison D, McInnes E J L, Schnack J, Palacios E and Evangelisti M 2014 Nat. Commun. 5 5321 [50] Bulled J M, Paddison J A, Wildes A, Lhotel E, Cassidy S J, Pato- DoldAń B, Gm ez-Aguirre L C, Saines P J and Goodwin A L 2022 Phys. Rev. Lett. 128 177201 [51] Tokiwa Y, Bachus S, Kavita K, Jesche A, Tsirlin A A and Gegenwart P 2021 Commun. Mater. 2 42 [52] Jesche A,Winterhalter-Stocker N, Hirschberger F, Bellon A, Bachus S, Tokiwa Y, Tsirlin A A and Gegenwart P 2023 Phys. Rev. B 107 104402 [53] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186 [54] Shimura Y,Watanabe K, Taniguchi T, Osato K, Yamamoto R, Kusanose Y, Umeo K, Fujita M, Onimaru T and Takabatake T 2022 J. Appl. Phys. 131 013903 [55] Gruner T, Chen J, Jang D, Banda J, Geibel C, Brando M and Grosche F M 2024 Commun. Mater. 5 63 [56] Tokiwa Y, Piening B, Jeevan H S, Bud’ko S L, Canfield P C and Gegenwart P 2016 Sci. Adv. 2 e1600835 [57] Wolf B, Tsui Y, Jaiswal-Nagar D, Tutsch U, Honecker A, Remović- Langer K, Hofmann G, Prokofiev A, Assmus W and Donath G 2011 Proc. Natl. Acad. Sci. USA 108 6862 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|