Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 020701    DOI: 10.1088/1674-1056/ae24f0
TOPICAL REVIEW — Multiferroicity and multicaloric effects Prev  

Magnetic refrigerants for ultralow temperatures: A mini-review

Ziyu W. Yang(杨子煜)1,3, Shuai Tang(唐帅)1,2, Guangkai Zhang(张广凯)1, Ciyu Qin(秦慈宇)1,2, Maocai Pi(皮茂材)1,2, Xubin Ye(叶旭斌)1, Zhao Pan(潘昭)1, Yu-Jia Zeng(曾昱嘉)3, and Youwen Long(龙有文)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  Accessing the milli-Kelvin regime is increasingly important for next-generation quantum technologies and deep-space observations. Among established cryogenic techniques, adiabatic demagnetization refrigeration (ADR) is distinctive for its all-solid-state design, low vibration, and intrinsic gravity independence. Here we present a materials-centered review of ADR refrigerants, connecting classical thermodynamics to modern quantum many-body behavior. Beyond hydrated paramagnetic salts, dense rare-earth oxides and correlated-disorder ceramics, we highlight emerging quantum-engineered refrigerants, including geometrically frustrated magnets, and quantum-critical systems. In these materials, suppressing long-range order and tailoring low-energy excitations redistribute spin entropy into the sub-Kelvin window, enabling large and reversible entropy changes at the lowest accessible temperatures. We discuss the central trade-offs among volumetric entropy density, thermal transport, and magnetic ordering, and outline possible design rules for staged ADR architectures.
Keywords:  adiabatic demagnetization refrigeration      magnetocaloric effect      cryogenics  
Received:  14 November 2025      Revised:  26 November 2025      Accepted manuscript online:  27 November 2025
PACS:  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: This work was supported by the National Key R&D Program of China (Grant No. 2021YFA1400300), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515111009), and the National Natural Science Foundation of China (Grant Nos. 12425403, 12261131499, and 52273298).
Corresponding Authors:  Youwen Long     E-mail:  ywlong@iphy.ac.cn

Cite this article: 

Ziyu W. Yang(杨子煜), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Ciyu Qin(秦慈宇), Maocai Pi(皮茂材), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Yu-Jia Zeng(曾昱嘉), and Youwen Long(龙有文) Magnetic refrigerants for ultralow temperatures: A mini-review 2026 Chin. Phys. B 35 020701

[1] Chen Z, Shen J, Zhao Y N, Zheng W, Yang L, Lu Y, Liu J and Li Z 2025 Appl. Therm. Eng. 265 125562
[2] Shirron P J 2014 Cryogenics 62 130
[3] Shirron P J, KimballMO, Ottens R S, James B L, Canavan E R, DiPirro M J, Bialas T A, Sneiderman G A, Kilbourne C A, Porter F S, Kelley R L, Barnstable K R, Fujimoto R, Takei Y and Yoshida S 2025 J. Astron. Telesc. Inst. 11 042015
[4] Jiang C, Li C, Jin H and Cui W 2023 Sci. Bull. 68 2709
[5] Zu H, Dai W and De Waele A 2022 Cryogenics 121 103390
[6] Debye P 1926 Ann. Phys. 386 1154
[7] Giauque W 1927 J. Am. Chem. Soc. 49 1864
[8] Giauque W and MacDougall D 1933 Phys. Rev. 43 768
[9] Khramov Y A 1985 Sov. J. Low Temp. Phys. 11 672
[10] De Haas W, Wiersma E and Kramers H 1934 Physica 1 1
[11] Heer C, Barnes C and Daunt J 1953 Phys. Rev. 91 412
[12] Heer C, Barnes C and Daunt J 1954 Rev. Sci. Instrum. 25 1088
[13] Zimmerman J, McNutt J and Bohm H 1962 Cryogenics 2 153
[14] Rosenblum S, Sheinberg H, and Steyert W 1976 Cryogenics 16 245
[15] Wikus P, Canavan E, Heine S T, Matsumoto K and Numazawa T 2014 Cryogenics 62 150
[16] Treu T, Klinger M, Oefele N, Telang P, Jesche A and Gegenwart P 2024 J. Phys.: Condens. Matter 37 013001
[17] Xu Q F, Wu R T, Long L S and Zheng L S 2025 Acc. Chem. Res. 58 2898
[18] Barclay J A, Rosebblum S S and Steyert W A 1976 Cryogenics 16 539
[19] Fisher R, Hornung E, Brodale G and Giauque W 1973 J. Chem. Phys. 58 5584
[20] Vilches O and Wheatley J 1966 Rev. Sci. Instrum. 37 819
[21] Kleinhans M, Eibensteiner K, Leiner J C, Spallek J, Regnat A and Pfleiderer C 2023 Phys. Rev. Appl. 19 014038
[22] Barclay J A 1988 Adv. Cryog. Eng. 33 719
[23] Brasiliano D A P, Duval J M, Marin C, Bichaud E, Brison J P, Zhitomirsky M and Luchier N 2020 Cryogenics 105 103002
[24] McMichael R D, Ritter J J and Shull R D 1993 J. Appl. Phys. 73 6946
[25] Numazawa T, Kamiya K, Shirron P, DiPirro M and Matsumoto K 2006 AIP Conf. Proc. 850 1579
[26] Morozov O A, Korableva S L, Nurtdinova L A, Kyashkin V M, Popov P A, Klimovitskii A E, Pudovkin M S and Semashko V V 2023 Opt. Mater. 137 113490
[27] DiPirro M, Canavan E, Shirron P and Tuttle J 2004 Cryogenics 44 559
[28] Yang Z W, Zhang J, Lu D, Zhang X, Zhao H, Cui H, Zeng Y J and Long Y 2023 Inorg. Chem. 62 5282
[29] Yang Z, Ge J Y, Ruan S, Cui H and Zeng Y J 2021 J. Mater. Chem. C 9 6754
[30] Yang Z, Zhang H, Bai M, Li W, Huang S, Ruan S and Zeng Y J 2020 J. Mater. Chem. C 8 11866
[31] Wang B, Liu X, Hu F, Wang J T, Xiang Y, Sun P, Wang J, Sun J, Zhao T and Mo Z 2024 J. Am. Chem. Soc. 146 35016
[32] Wang Y, Xiang J, Zhang L, Gong J, Li W, Mo Z and Shen J 2024 J. Am. Chem. Soc. 146 3315
[33] Xu Q, Liu B, Ye M, Zhuang G, Long L and Zheng L 2022 J. Am. Chem. Soc. 144 13787
[34] Xu P, Ma Z, Wang P, Wang H and Li L 2021 Mater. Today Phys. 20 100470
[35] Palacios E, Rodríguez-Velamazán J A, Evangelisti M, McIntyre G J, Lorusso G, Visser D, De Jongh L and Boatner L A 2014 Phys. Rev. B 90 214423
[36] Song Z M, Zhao N, Ge H, Li T T, Yang J, Wang L, Fu Y, Zhang Y Z, Wang S M, Mei J W, He H, Guo S, Wu L S and Sheng J M 2023 Phys. Rev. B 107 125126
[37] Yang Z, Qin S, Ye X, Liu Z, Guo Y, Cui H, Ge J Y, Li H, Long Y and Zeng Y J 2022 Sci. China: Phys., Mech. Astron. 65 247011
[38] Wang Y, Xiang J, Zhang L, Gong J, Li W, Mo Z and Shen J 2024 J. Am. Chem. Soc. 146 3315
[39] Zhang Y, Hao W, Lin J, Li H Fand Li L 2024 Acta Mater. 272 119946
[40] Yang Z W, Qin S, Zhang J, Lu D, Zhao H, Kang C, Cui H, Long Y and Zeng Y J 2022 Mater. Today Phys. 27 100810
[41] Song F Y, Liu X Y, Dong C, Zhou J, Shi X L, Han Y Y, Ling L S, Ren H F, Yuan S L, Wang S, Xiang J S, Sun P J and Tian Z M 2025 Chin. Phys. Lett. 42 120706
[42] Zhang Y, Li A, Hao W, Li H F and Li L 2025 Acta Mater. 292 121033
[43] Zhang Y, Na Y, Hao W, Gottschall T and Li L 2024 Adv. Funct. Mater. 34 2409061
[44] Yang ZW, Zhang J, Liu B, Zhang X, Lu D, Zhao H, Pi M, Cui H, Zeng Y J, Pan Z, Shen Y, Li S and Long Y 2024 Adv. Sci 11 2306842
[45] Xu Q F, Zhao P, Chen M T, Wu R T, Dai W, Long L S and Zheng L S 2025 Adv. Mater. 37 2414226
[46] Zhitomirsky M 2003 Phys. Rev. B 67 104421
[47] Koskelo E C, Mukherjee P, Liu C, Sackville Hamilton A C, Ong H S, Castelnovo C, Zhitomirsky M and Dutton S E 2023 PRX Energy 2 033005
[48] Manvell A S, Dunstan M A, Gracia D, Hruby J, Kubus M, McPherson J N, Palacios E,Weihe H, Hill S and Schnack J 2025 J. Am. Chem. Soc. 147 7597
[49] Sharples J W, Collison D, McInnes E J L, Schnack J, Palacios E and Evangelisti M 2014 Nat. Commun. 5 5321
[50] Bulled J M, Paddison J A, Wildes A, Lhotel E, Cassidy S J, Pato- DoldAń B, Gm ez-Aguirre L C, Saines P J and Goodwin A L 2022 Phys. Rev. Lett. 128 177201
[51] Tokiwa Y, Bachus S, Kavita K, Jesche A, Tsirlin A A and Gegenwart P 2021 Commun. Mater. 2 42
[52] Jesche A,Winterhalter-Stocker N, Hirschberger F, Bellon A, Bachus S, Tokiwa Y, Tsirlin A A and Gegenwart P 2023 Phys. Rev. B 107 104402
[53] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[54] Shimura Y,Watanabe K, Taniguchi T, Osato K, Yamamoto R, Kusanose Y, Umeo K, Fujita M, Onimaru T and Takabatake T 2022 J. Appl. Phys. 131 013903
[55] Gruner T, Chen J, Jang D, Banda J, Geibel C, Brando M and Grosche F M 2024 Commun. Mater. 5 63
[56] Tokiwa Y, Piening B, Jeevan H S, Bud’ko S L, Canfield P C and Gegenwart P 2016 Sci. Adv. 2 e1600835
[57] Wolf B, Tsui Y, Jaiswal-Nagar D, Tutsch U, Honecker A, Remović- Langer K, Hofmann G, Prokofiev A, Assmus W and Donath G 2011 Proc. Natl. Acad. Sci. USA 108 6862
[1] Microstructural evolution and magnetocaloric properties of off-stoichiometric La1.2Fe11.6Si1.4 alloys with interstitial C atoms
Huiyan Zhang(张慧燕), Ye Zhu(朱叶), Fucheng Zhu(朱福成), Yang Xu(许旸), Yunbo Chen(陈云博), Hailing Li(李海玲), Weihua Gu(顾未华), Zhiyuan Liu(刘志愿), Weihuo Li(李维火), and Ailin Xia(夏爱林). Chin. Phys. B, 2025, 34(8): 088202.
[2] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[3] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[4] Tuning the magnetocaloric and structural properties of La0.67Sr0.28Pr0.05Mn1-xCoxO3 refrigeration materials
Changji Xu(徐长吉), Xinyu Jiang(姜心雨), Zhengguang Zou(邹正光), Zhuojia Xie(谢卓家), Weijian Zhang(张伟建), and Min Feng(冯敏). Chin. Phys. B, 2024, 33(12): 127501.
[5] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[6] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[7] A cryogenic radio-frequency ion trap for a 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Yao Huang(黄垚), Baolin Zhang(张宝林), Zixiao Ma(马子晓), Yanmei Hao(郝艳梅), Ruming Hu(胡如明), Huaqing Zhang(张华青), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 113701.
[8] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[9] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[10] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[11] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[12] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[13] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[14] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[15] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
No Suggested Reading articles found!