|
|
|
Intralayer structure reconstruction of general weighted output-coupling multilayer complex networks |
| Xinwei Wang(王欣伟)1,2, Yayong Wu(吴亚勇)1,2, Ying Zheng(郑颖)1,2, and Guo-Ping Jiang(蒋国平)1,2,† |
1 College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 Jiangsu Engineering Laboratory for IOT Intelligent Robots (IOTRobot), Nanjing 210023, China |
|
|
|
|
Abstract Multilayer complex dynamical networks, characterized by the intricate topological connections and diverse hierarchical structures, present significant challenges in determining complete structural configurations due to the unique functional attributes and interaction patterns inherent to different layers. This paper addresses the critical question of whether structural information from a known layer can be used to reconstruct the unknown intralayer structure of a target layer within general weighted output-coupling multilayer networks. Building upon the generalized synchronization principle, we propose an innovative reconstruction method that incorporates two essential components in the design of structure observers, the cross-layer coupling modulator and the structural divergence term. A key advantage of the proposed reconstruction method lies in its flexibility to freely designate both the unknown target layer and the known reference layer from the general weighted output-coupling multilayer network. The reduced dependency on full-state observability enables more deployment in engineering applications with partial measurements. Numerical simulations are conducted to validate the effectiveness of the proposed structure reconstruction method.
|
Received: 22 May 2025
Revised: 08 July 2025
Accepted manuscript online: 18 July 2025
|
|
PACS:
|
02.30.Yy
|
(Control theory)
|
| |
07.05.Dz
|
(Control systems)
|
| |
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62373197), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 23KJB120010), the Industry-University-Research Cooperation Project of Jiangsu Province, China (Grant No. BY20251038), and the Cultivation and Incubation Project of the College of Automation, Nanjing University of Posts and Telecommunications. |
Cite this article:
Xinwei Wang(王欣伟), Yayong Wu(吴亚勇), Ying Zheng(郑颖), and Guo-Ping Jiang(蒋国平) Intralayer structure reconstruction of general weighted output-coupling multilayer complex networks 2026 Chin. Phys. B 35 020202
|
[1] Pulvermüller F, Tomasello R, Henningsen-SchomersMR andWennekers T 2021 Nat. Rev. Neurosci. 22 488 [2] Shen Y, Wang J and Navlakha S 2021 Neural Comput. 33 3179 [3] Lin X, Yu R, Yu J andWen H 2022 IEEE Trans. Ind. Electron. 70 11310 [4] Shao X G, Zhang J and Lu Y J 2024 Chin. Phys. B 33 070203 [5] Hu H X, Wen G, Chen Y and ZhengWX 2024 Automatica 169 111840 [6] Yang P, Fan R, Wang Y and Zhang Y 2024 Chin. Phys. B 33 070206 [7] D’Souza R M, di Bernardo M and Liu Y Y 2023 Nat. Rev. Phys. 5 250 [8] Liang X S 2021 Chaos 31 093123 [9] Li X, Zhang H, Shen Y, Hao L and Shang W 2022 IEEE Trans. Intell. Transp. Syst. 24 13330 [10] Lin J C, Fan R G, Wang Y Y and Du K 2023 Chin. Phys. B 32 100502 [11] Muhtadi A, Pandit D, Nguyen N and Mitra J 2021 IEEE Trans. Ind. Appl. 57 2223 [12] Isufi E, Gama F, Shuman D I and Segarra S 2024 IEEE Trans. Signal Process. 72 4745 [13] Sun Y, Lei L, Guan D, Kuang G and Liu L 2022 IEEE Trans. Geosci. Remote Sens. 60 1 [14] Li J, Sun Q, Peng H, Yang B, Wu J and Yu P S 2023 IEEE Trans. Pattern Anal. Mach. Intell. 45 8063 [15] Fei J and Liu L 2021 IEEE Trans. Ind. Electron. 69 8366 [16] Zheng Y, Zhang H T, Yue Z andWang J 2024 IEEE Trans. Neural Netw. Learn. Syst. 35 8063 [17] Massignan J A, London J B, Bessani M, Maciel C D, Fannucchi R Z and Miranda V 2021 IEEE Trans. Smart Grid 13 526 [18] Li Y, He J, Chen C and Guan X 2023 IEEE Trans. Autom. Control 69 3483 [19] Liu X, Shao Q and Chen D 2024 IEEE Trans. Artif. Intell. 5 3445 [20] Karimi H S and Natarajan B 2021 IEEE Trans. Smart Grid 12 5299 [21] Zhang Y, Yang C, Huang K, Jusup M, Wang Z and Li X 2020 IEEE Trans. Emerg. Top. Comput. Intell. 5 920 [22] van Waarde H J, Tesi P and Camlibel M K 2019 IEEE Trans. Autom. Control 64 4300 [23] Sharf M and Zelazo D 2023 IEEE Trans. Control Netw. Syst. 10 1616 [24] Zhao J L, Zhang X J, Ding X, Zhang X and Zhang H F 2025 IEEE Trans. Netw. Sci. Eng. 12 2333 [25] Zhang H F, Xu F, Bao Z K and Ma C 2018 IEEE Trans. Circuits Syst. I: Reg. Pap. 66 1608 [26] Li X, Lin L, Liu Q, Kong Z and Ding L 2021 IEEE Trans. Comput. Soc. Syst. 10 24 [27] Zhu S, Zhou J, Chen G and Lu J A 2019 IEEE Trans. Cybern. 51 2224 [28] Xu Y, Zhou W, Zhang J, Sun W and Tong D 2017 Nonlinear Dyn. 88 2969 [29] Veedu M S and Salapaka M V 2023 Automatica 156 111182 [30] Zhang C, Chen H, Xu Q, Feng Y and Li R 2024 Nonlinear Anal. Hybrid Syst. 51 101431 [31] Wang Y, Wu X, Feng H, Lu J and Lü J 2016 Sci. China Technol. Sci. 59 1232 [32] Yan J, Zhou J and Wu Z 2019 Physica A 525 256 [33] Chen X, Zhang J and Ma T 2016 IEEE/CAA J. Autom. Sinica 3 295 [34] Chen H, Zhang C and Yang H 2025 IEEE Trans. Neural Netw. Learn. Syst. 36 8063 [35] Zheng Y, Wu X, He G and Wang W 2021 Chaos 31 043125 [36] Chen C, Zhou J, Qu F, Song C and Zhu S 2022 Commun. Nonlinear Sci. Numer. Simul. 115 106779 [37] Fan Z and Wu X 2022 Chaos 32 113128 [38] Ma C, Lin Q, Lin Y and Ma X 2021 Knowl.-Based Syst. 213 106666 [39] Wu X, Fan Z, He J, Wang W and Lü J 2023 IEEE Trans. Syst., Man, Cybern.: Syst. 53 7794 [40] Wang Y, Wu X, Lü J, Lu J A and D’Souza RM2018 IEEE Trans. Netw. Sci. Eng. 7 538 [41] Liu H, Li Y, Li Z, Lü J and Lu J A 2021 IEEE Trans. Cybern. 52 6255 [42] Zheng Y, Wu X, Fan Z, Chen K and Lü J 2025 IEEE Trans. Cybern. 55 3445 [43] Wang X, Lü J and Wu X 2018 IEEE Trans. Syst., Man, Cybern.: Syst. 50 2588 [44] Li G, Li N, Liu S and Wu X 2019 Chaos 29 053117 [45] Zhang C, Yang H, Zhou J and Zhou H 2024 IEEE Trans. Autom. Sci. Eng. 21 4745 [46] Zhao X, Zhou J, Zhu S, Ma C and Lu J A 2019 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 67 290 [47] Bao H, Park J H and Cao J 2020 IEEE Trans. Neural Netw. Learn. Syst. 32 3230 [48] Qiu Q and Su H 2022 IEEE Trans. Netw. Sci. Eng. 9 1386 [49] Liu H, Shang Z, Ren Z, Li Y, Zeng Z and Lu J 2022 Sci. China Technol. Sci. 65 1493 [50] Tao G 1997 IEEE Trans. Autom. Control 42 698 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|