Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 023702    DOI: 10.1088/1674-1056/adecfd
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Experimental setup of NTSC SrII optical lattice clock

Feng Guo(郭峰)1, Jia-An Li(李家安)1,2, Yan-Yan Liu(刘艳艳)1, Xiao-Tong Lu(卢晓同)1,2,†, and Hong Chang(常宏)1,2,‡
1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 School of Astronomy and Space Science, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
Abstract  We report the SrII optical lattice clock at the National Time Service Center (NTSC). In this system, a blackbody radiation shield with movable lattice mitigates blackbody radiation shifts through active temperature control. A shallow optical lattice with minimal tunneling minimizes AC Stark shifts. Phase-locked counter-propagating lattice beams and conductive vacuum viewports further reduce systematic uncertainties and a novel initial-state preparation method simplifies the system. Clock transition spectra achieve a linewidth of 2.5 Hz with a 400 ms clock pulse, and self-comparison stability reaches 5.1$\times10^{-16}$ at 1 s. These advancements give this clock the potential to be a critical platform for realizing outstanding systematic uncertainties in the future.
Keywords:  optical lattice      optical clock      strontium  
Received:  20 May 2025      Revised:  30 June 2025      Accepted manuscript online:  08 July 2025
PACS:  37.10.Jk (Atoms in optical lattices)  
  32.70.Jz (Line shapes, widths, and shifts)  
  06.30.Ft (Time and frequency)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Fund: This study is supported by the Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0300900 and 2021ZD0300902), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB35010202), and the Operation and Maintenance of Major Scientific and Technological Infrastructure of the Chinese Academy of Sciences (Grant No. 2024000014).
Corresponding Authors:  Xiao-Tong Lu, Hong Chang     E-mail:  luxiaotong@ntsc.ac.cn;changhong@ntsc.ac.cn

Cite this article: 

Feng Guo(郭峰), Jia-An Li(李家安), Yan-Yan Liu(刘艳艳), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏) Experimental setup of NTSC SrII optical lattice clock 2026 Chin. Phys. B 35 023702

[1] Ludlow A D, BoydMM, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[2] McGrew W F, Zhang X, Fasano R J, Schaffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[3] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[4] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photonics 13 714
[5] Aeppli A, Kim K, Wareld W, Safronova M S and Ye J 2024 Phys. Rev. Lett. 133 023401
[6] Filzinger M, Dorscher S, Lange R, Klose J, Steinel M, Benkler E, Peik E, Lisdat C and Huntemann N 2023 Phys. Rev. Lett. 130 253001
[7] Boulder Atomic Clock Optical Network BACON Collaboration 2021 Nature 591 564
[8] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photonics 14 411
[9] Zheng X, Dolde J, Cambria M C, Lim H M and Kolkowitz S 2023 Nat. Commun. 14 4886
[10] Dimarcq N, Gertsvolf M, Mileti G, et al. 2024 Metrologia 61 012001
[11] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188
[12] Lodewyck J 2019 Metrologia 56 055009
[13] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photonics 9 185
[14] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004
[15] Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C and Fang Z J 2022 Chin. Phys. Lett. 39 080601
[16] Lu X T, Guo F, Wang Y B, Xu Q F, Zhou C H, Xia J J, Wu W J and Chang H 2023 Metrologia 60 015008
[17] Li J, Cui X Y, Jia Z P, et al. 2024 Metrologia 61 015006
[18] Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W and Ludlow A D 2014 Phys. Rev. Lett. 113 260801
[19] Kim K, Aeppli A, Bothwell T and Ye J 2023 Phys. Rev. Lett. 130 113203
[20] Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409
[21] Beloy K, Zhang X, McGrew W F, Hinkley N, Yoon T H, Nicolodi D, Fasano R J, Scha er S A, Brown R C and Ludlow A D 2018 Phys. Rev. Lett. 120 183201
[22] Jia Z P, Cui X Y, Xie Y J, Zhang X, Niu G Z, Liu X Y, Zhu Q Q, Li J and Dai H N 2025 Phys. Rev. Appl. 23 014014
[23] Falke S, Misera M, Sterr U and Lisdat C 2012 Appl. Phys. B 107 301
[24] Katori H, Ido T, Isoya Y and Kuwata-Gonokami M 1999 Phys. Rev. Lett. 82 1116
[25] Zheng X, Dolde J, Lochab V, Merriman B N, Li H and Kolkowitz S 2022 Nature 602 425
[26] Baillard X, FouchéM, Targat R L, Westergaard P G, Lecallier A, Chapelet F, Abgrall M, Rovera G D, Laurent P, Rosenbusch P, Bize S, Santarelli G, Clairon A, Lemonde P, Grosche G, Lipphardt B and Schnatz H 2008 Eur. Phys. J. D 48 11
[27] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703
[28] Al-Masoudi A, Dorscher S, Hafner S, Sterr U and Lisdat C 2015 Phys. Rev. A 92 063814
[29] Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887
[30] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420
[1] Progresses on Th-doped materials for solid-state nuclear clock
Cheng-Chun Zhao(赵呈春), Lin Li(李琳), Shan-Ming Li(李善明), Qiao-Rui Gong(龚巧瑞), Pei-Xiong Zhang(张沛雄), Yin Hang(杭寅), Long-Sheng Ma(马龙生), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2026, 35(2): 020602.
[2] Interacting bosons in a three-dimensional lattice
Dian-Cheng Zhang(张典承) and Shi-Jie Yang(杨师杰). Chin. Phys. B, 2025, 34(8): 080304.
[3] Resolving gravitational redshift with sub-millimeter height differences using spin-squeezed optical clocks
Deshui Yu(于得水), Jia Zhang(张佳), Shougang Zhang(张首刚), Tiantian Shi(史田田), and Jingbiao Chen(陈景标). Chin. Phys. B, 2025, 34(5): 054208.
[4] Observation of Josephson effect in 23Na spinor Bose-Einstein condensates
Yong Qin(秦永), Xin Wang(王鑫), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(3): 033701.
[5] Stabilizing 459 nm passive optical clock for pumping 1470 nm active optical clock
Haoyang Wu(吴浩洋), Zhiqiang Wen(温智强), Chen Wang(王琛), Zhenfeng Liu(刘珍峰), Jingbiao Chen(陈景标), Shougang Zhang(张首刚), and Deshui Yu(于得水). Chin. Phys. B, 2025, 34(11): 114201.
[6] A proposal for detecting weak electromagnetic waves around 2.6 μm wavelength with Sr optical clock
Ruo-Shui Han(韩弱水), Wei Wang(王伟), and Tao Wang(汪涛). Chin. Phys. B, 2024, 33(4): 043201.
[7] A Yb optical clock with a lattice power enhancement cavity
Chunyun Wang(王春云), Yuan Yao(姚远), Haosen Shi(师浩森), Hongfu Yu(于洪浮),Longsheng Ma(马龙生), and Yanyi Jiang(蒋燕义). Chin. Phys. B, 2024, 33(3): 030601.
[8] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[9] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[10] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[11] A cryogenic radio-frequency ion trap for a 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Yao Huang(黄垚), Baolin Zhang(张宝林), Zixiao Ma(马子晓), Yanmei Hao(郝艳梅), Ruming Hu(胡如明), Huaqing Zhang(张华青), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 113701.
[12] A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Zixiao Ma(马子晓), Ruming Hu(胡如明), Baolin Zhang(张宝林), Yanmei Hao(郝艳梅), Huaqing Zhang(张华青), Yao Huang(黄垚), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 110704.
[13] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[14] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[15] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
No Suggested Reading articles found!