| TOPICAL REVIEW — Advances in thorium nuclear optical clocks |
Prev
Next
|
|
|
Steps towards a 229Th ionic nuclear clock in a linear ion trap |
| Wen-Ting Gan(甘文婷)1,2, Zi Li(李梓)1,2, Chen Wang(王晨)1,2, Xia Hua(华夏)1,†, and Xin Tong(童昕)1,3,‡ |
1 Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Wuhan Institute of Quantum Technology, Wuhan 430206, China |
|
|
|
|
Abstract Owing to the presence of a low-energy, long-lived nuclear isomeric state, $^{229}$Th is an ideal candidate for developing the next generation clock - the nuclear clock - holding great promise for both applied and fundamental physics. The $^{229}$Th ionic nuclear optical clock has garnered considerable attention, attributed to its high precision with a relative uncertainty of $\le 1.5 \times 10^{-19}$ and the potential for common-mode noise cancellation via self-comparison between the nuclear transition and the electronic transition of thorium ions. In this article, we focus on Th$^{n+}$ ions ($n = 1$, 2, 3) and present a comprehensive review of the current progress in the development of ionic nuclear clocks, covering essential steps such as ion generation, trapping, and cooling. Furthermore, we discuss the realization of a closed-loop clock cycle, addressing key aspects including stable isomer excitation and efficient isomer deexcitation.
|
Received: 30 August 2025
Revised: 12 November 2025
Accepted manuscript online: 30 December 2025
|
|
PACS:
|
37.10.Rs
|
(Ion cooling)
|
| |
37.10.Ty
|
(Ion trapping)
|
| |
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
| Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0920000) and the National Natural Science Foundation of China (Grant No. 12341401). |
Corresponding Authors:
Xia Hua, Xin Tong
E-mail: huaxia@apm.ac.cn;tongxin@apm.ac.cn
|
Cite this article:
Wen-Ting Gan(甘文婷), Zi Li(李梓), Chen Wang(王晨), Xia Hua(华夏), and Xin Tong(童昕) Steps towards a 229Th ionic nuclear clock in a linear ion trap 2026 Chin. Phys. B 35 023703
|
[1] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87 [2] Wang D, Guo R, Xiao S, Xin J, Tang T and Yuan Y 2019 Adv. Space Res. 63 2889 [3] Hollberg L 2020 Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications (Chichester: John Wiley & Sons) p. 1497 [4] Liu H, Zhang R, Liu J and Zhang M 2016 Sci. China Technol. Sci. 59 9 [5] Lodewyck J 2019 Metrologia 56 055009 [6] Dimarcq N, Gertsvolf M, Mileti G, et al. 2024 Metrologia 61 012001 [7] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043 [8] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008 [9] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420 [10] Peik E and Tamm C 2003 Europhys. Lett. 61 181 [11] Campbell C J, Radnaev A G, Kuzmich A, Dzuba V A, Flambaum V V and Derevianko A 2012 Phys. Rev. Lett. 108 120802 [12] Yamaguchi A, Shigekawa Y, Haba H, Kikunaga H, Shirasaki K, Wada M and Katori H 2024 Nature 629 62 [13] Aeppli A, Kim K,WarfieldW, SafronovaMS and Ye J 2024 Phys. Rev. Lett. 133 023401 [14] Marshall M C, Castillo D A R, Arthur-Dworschack W J, Aeppli A, Kim K, Lee D, Warfield W, Hinrichs J, Nardelli N V, Fortier T M, Ye J, Leibrandt D R and Hume D B 2025 Phys. Rev. Lett. 135 033201 [15] Zhang B, Ma Z, Huang Y, Han H, Hu R, Wang Y, Zhang H, Tang L, Shi T, Guan H and Gao K 2025 arXiv:2506.17423 [physics.atom-ph] [16] Flambaum V V 2006 Phys. Rev. Lett. 97 092502 [17] Berengut J C and Flambaum V V 2010 Nucl. Phys. News 20 19 [18] Flambaum V V 2019 Phys. Rev. C 99 035501 [19] Wcisło P, Morzyński P, Bober M, Cygan A, Lisak D, Ciuryło R and Zawada M 2016 Nat. Astron. 1 0009 [20] Thirolf P G, Seiferle B and Von Der Wense L 2019 Ann. Phys. (Berl.) 531 1800381 [21] Kroger L A and Reich C W 1976 Nucl. Phys. A 259 29 [22] Reich C W and Helmer R G 1990 Phys. Rev. Lett. 64 271 [23] Helmer R G and Reich C W 1994 Phys. Rev. C 49 1845 [24] Guimar?aes-Filho Z O and Helene O 2005 Phys. Rev. C 71 044303 [25] Beck B R, Becker J A, Beiersdorfer P, Brown G V, Moody K J, Wilhelmy J B, Porter F S, Kilbourne C A and Kelley R L 2007 Phys. Rev. Lett. 98 142501 [26] Beck B R, Becker J A, Beiersdorfer P, Brown G V, Moody K J, Wu C Y, Wilhelmy J B, Porter F S, Kilbourne C A and Kelley R L 2009 LLNL-PROC 415170 [27] Yamaguchi A, Muramatsu H, Hayashi T, Yuasa N, Nakamura K, Takimoto M, Haba H, Konashi K, Watanabe M, Kikunaga H, Maehata K, Yamasaki N Y and Mitsuda K 2019 Phys. Rev. Lett. 123 222501 [28] Sikorsky T, Geist J, Hengstler D, Kempf S, Gastaldo L, Enss C, Mokry C, Runke J, Düllmann C E, Wobrauschek P, Beeks K, Rosecker V, Sterba J H, Kazakov G, Schumm T and Fleischmann A 2020 Phys. Rev. Lett. 125 142503 [29] Seiferle B, Von Der Wense L, Bilous P V, Amersdorffer I, Lemell C, Libisch F, Stellmer S, Schumm T, Düllmann C E, Pálffy A and Thirolf P G 2019 Nature 573 243 [30] Kraemer S, Moens J, Athanasakis-Kaklamanakis M, et al. 2023 Nature 617 706 [31] Hiraki T, Okai K, Bartokos M, et al. 2024 Nat. Commun. 15 5536 [32] Beeks K, Sikorsky T, Rosecker V, Pressler M, Schaden F, Werban D, Hosseini N, Rudischer L, Schneider F, Berwian P, Friedrich J, Hainz D, Welch J, Sterba J H, Kazakov G and Schumm T 2023 Sci. Rep. 13 3897 [33] Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col L T, Schneider F, Leitner A, Pressler M, Kazakov G A, Beeks K, Sikorsky T and Schumm T 2024 Phys. Rev. Lett. 132 182501 [34] Elwell R, Schneider C, Jeet J, Terhune J E S, Morgan H W T, Alexandrova A N, Tran Tan H B, Derevianko A and Hudson E R 2024 Phys. Rev. Lett. 133 013201 [35] Zhang C, Ooi T, Higgins J S, Doyle J F, Von Der Wense L, Beeks K, Leitner A, Kazakov G A, Li P, Thirolf P G, Schumm T and Ye J 2024 Nature 633 63 [36] Zhang C, Von Der Wense L, Doyle J F, Higgins J S, Ooi T, Friebel H U, Ye J, Elwell R, Terhune J E S, Morgan H W T, Alexandrova A N, Tran Tan H B, Derevianko A and Hudson E R 2024 Nature 636 603 [37] Elwell R, Terhune J E S, Schneider C, Morgan H W T, Tan H B T, Perera U C, Rehn D A, Alfonso M C, Von Der Wense L, Seiferle B,Scharl K, Thirolf P G, Derevianko A and Hudson E R 2025 Nature 648 300 [38] Si R, Shi C, Xue N, Kong X, Chen C, Tu B and Ma Y G 2025 Sci. China Phys. Mech. Astron. 68 272011 [39] Von Der Wense L and Seiferle B 2020 Eur. Phys. J. A 56 277 [40] Beeks K, Sikorsky T, Schaden F, Pressler M, Schneider F, Koch B N, Pronebner T, Werban D, Hosseini N, Kazakov G, Welch J, Sterba J H, Kraus F and Schumm T 2024 Phys. Rev. B 109 094111 [41] Higgins J S, Ooi T, Doyle J F, Zhang C, Ye J, Beeks K, Sikorsky T and Schumm T 2025 Phys. Rev. Lett. 134 113801 [42] Yu S C, Gan W T, Hua X, Tong X and Li C B 2024 Phys. Rev. A 109 063115 [43] Porsev S G and Flambaum V V 2010 Phys. Rev. A 81 042516 [44] Porsev S G, Flambaum V V, Peik E and Tamm C 2010 Phys. Rev. Lett. 105 182501 [45] Safronova M S, Safronova U I and Clark C W 2014 Phys. Rev. A 90 032512 [46] Zhang R, Lu Y, Yan S and Ning C 2025 Phys. Rev. A 111 023102 [47] Tang R, Si R, Fei Z, Fu X, Lu Y, Brage T, Liu H, Chen C and Ning C 2021 Phys. Rev. A 103 042817 [48] Nickerson B S, Pimon M, Bilous P V, Gugler J, Beeks K, Sikorsky T, Mohn P, Schumm T and Pálffy A 2020 Phys. Rev. Lett. 125 032501 [49] Yu S C, Hua X, Tong X and Li C B 2025 Chin. Phys. Lett. 42 120302 [50] Porsev S G, Cheung C and Safronova M S 2021 Quantum Sci. Technol. 6 034014 [51] Raeder S, Sonnenschein V, Gottwald T, Moore I D, Reponen M, Rothe S, Trautmann N and Wendt K 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165005 [52] U. S. department of Energy (accessed on 28 August 2025) [53] Troyan V I, Borisyuk P V, Khalitov R R, Krasavin A V, Lebedinskii Y Y, Palchikov V G, Poteshin S S, Sysoev A A and Yakovlev V P 2013 Laser Phys. Lett. 10 105301 [54] Troyan V I, Borisyuk P V, Vasil’ev O S, Krasavin A V, Poteshin S S, Sysoev A A, Chernyshev D M, Donchenko S I and Pal’chikov V G 2014 Meas. Tech. 57 777 [55] De Matos J B, Destro M G, Da Silveira C A B and Rodrigues N A S 2014 Rev. Sci. Instrum. 85 083505 [56] Shao H,Wang M, Zeng M, Guan H and Gao K 2018 J. Phys. Commun. 2 095019 [57] Vrijsen G, Aikyo Y, Spivey R F, Inlek I V and Kim J 2019 Opt. Express 27 33907 [58] White B M, Low P J, De Sereville Y, Day M L, Greenberg N, Rademacher R and Senko C 2022 Phys. Rev. A 105 033102 [59] Osada A and Noguchi A 2022 J. Phys. Commun. 6 015007 [60] Stafe M, Marcu A and Puscas N N 2014 Pulsed Laser Ablation of Solids: Basics, Theory and Applications (Vol. 53) (Berlin, Heidelberg: Springer) [61] Kwong V H S 1989 Phys. Rev. A 39 4451 [62] Olmschenk S and Becker P 2017 Appl. Phys. B 123 99 [63] Sameed M, Maxwell D and Madsen N 2020 New J. Phys. 22 013009 [64] Láska L, Jungwirth K, Králikov B, Krása J, Pfeifer M, Rohlena K, Skása J, Ullschmied J, Badziak J, Parys P, Wolowski J, Woryna E, Gammino S, Torrisi L, Boody F P and Hora H 2003 Plasma Phys. Control. Fusion 45 585 [65] Zimmermann K, Okhapkin M V, Herrera-Sancho O A and Peik E 2012 Appl. Phys. B 107 883 [66] Torrisi L, Gammino S, Andò L, Nassisi V, Doria D and Pedone A 2003 Appl. Surf. Sci. 210 262 [67] Hoffman J, Chrzanowska J, Kucharski S, Moscicki T, Mihailescu I N, Ristoscu C and Szymanski Z 2014 Appl. Phys. A 117 395 [68] Prada-Rodrigo J, Maio Y, Faure N, Kachan E, Colombier J P and Sedao X 2024 J. Laser Micro-Nanoeng. 19 179 [69] Li Z, Li L, Hua X and Tong X 2024 J. Appl.Phys. 135 144402 [70] Li L 2024 The Study on the Preparation and Trapping of Thorium Triply Charged Ions for the Realization of the Nuclear Transition via Electronic Bridge Excitation (Ph. D. Dissertation) (Wuhan: Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences) (in Chinese) [71] Apiñániz J I, Sierra B, Martínez R, Longarte A, Redondo C and Castaño F 2008 J. Phys. Chem. C 112 16556 [72] Campbell C J, Steele A V, Churchill L R, DePalatis M V, Naylor D E, Matsukevich D N, Kuzmich A and ChapmanMS 2009 Phys. Rev. Lett. 102 233004 [73] Campbell C J, Radnaev A G and Kuzmich A 2011 Phys. Rev. Lett. 106 223001 [74] Herrera-Sancho O A, OkhapkinMV, Zimmermann K, Tamm Chr, Peik E, Taichenachev A V, Yudin V I and Głowacki P 2012 Phys. Rev. A 85 033402 [75] Herrera-Sancho O A, Nemitz N, Okhapkin M V and Peik E 2013 Phys. Rev. A 88 012512 [76] Okhapkin M V, Meier D M, Peik E, Safronova M S, Kozlov M G and Porsev S G 2015 Phys. Rev. A 92 020503 [77] Thielking J, Okhapkin M V, Głowacki P, Meier D M, Von Der Wense L, Seiferle B, Düllmann C E, Thirolf P G and Peik E 2018 Nature 556 321 [78] Meier D M, Thielking J, Głowacki P, Okhapkin M V, Müller R A, Surzhykov A and Peik E 2019 Phys. Rev. A 99 052514 [79] Borisyuk P V, Derevyashkin S P, Khabarova K Y, Kolachevsky N N, Lebedinsky Y Y, Poteshin S S, Sysoev A A, Tkalya E V, Tregubov D O, Troyan V I, Vasiliev O S, Yakovlev V P and Yudin V I 2017 Eur. J. Mass Spectrom. 23 146 [80] Derevyashkin S P, Borisyuk P V, Khabarova K Y, Kolachevsky N N, Strelkin S A, Tkalya E V, Tregubov D O, Tronin I V and Yakovlev V P 2021 Laser Phys. Lett. 18 015501 [81] Piotrowski M, Scarabel J, Lobino M, Streed E and Gensemer S 2020 OSA Contin. 3 2210 [82] Groot-Berning K, Stopp F, Jacob G, Budker D, Haas R, Renisch D, Runke J, Thörle-Pospiech P, Düllmann C E and Schmidt-Kaler F 2019 Phys. Rev. A 99 023420 [83] Beeks K, Sikorsky T, Schumm T, Thielking J, Okhapkin M V and Peik E 2021 Nat. Rev. Phys. 3 238 [84] Verlinde M, Kraemer S, Moens J, et al. 2019 Phys. Rev. C 100 024315 [85] Ghetta V 2008 Materials Issues for Generation IV Systems: Status, Open Questions and Challenges (Dordrecht: Springer Netherlands) p. 513 [86] Kuznetsov R A, Butkalyuk P S, Tarasov V A, Baranov A Yu, Butkalyuk I L, Romanov E G, Kupriyanov V N and Kazakova E V 2012 Radiochemistry 54 383 [87] Hogle S, Boll R A, Murphy K, Denton D, Owens A, Haverlock T J, Garland M and Mirzadeh S 2016 Appl. Radiat. Isot. 114 19 [88] Ma X,WenWQ, Huang Z K,Wang H B, Yuan Y J,Wang M, Sun Z Y, Mao L J, Yang J C, Xu H S, Xiao G Q and Zhan W L 2015 Phys. Scr. T166 014012 [89] Barci V, Ardisson G, Barci-Funel G, Weiss B, El Samad O and Sheline R K 2003 Phys. Rev. C 68 034329 [90] Sakharov S L 2010 Phys. Atom. Nuclei 73 1 [91] Von Der Wense L, Seiferle B, Laatiaoui M and Thirolf P G 2015 Eur. Phys. J. A 51 29 [92] Von Der Wense L, Seiferle B, Laatiaoui M, Neumayr J B, Maier H J, Wirth H F, Mokry C, Runke J, Eberhardt K, Düllmann C E, Trautmann N G and Thirolf P G 2016 Nature 533 47 [93] Von Der Wense L, Seiferle B, Laatiaoui M and Thirolf P G 2016 Nucl. Inst. Methods Phys. Res. B 376 260 [94] Seiferle B, Von DerWense L and Thirolf P G 2017 Phys. Rev. Lett. 118 042501 [95] Scharl K, Ding S, Holthoff G, Hussain M I, Kraemer S, Löbell L, Moritz D, Rozibakieva T, Seiferle B, Zacherl F and Thirolf P G 2023 Atoms 11 108 [96] Moritz D, Scharl K, Wiesinger M, Holthoff G, Teschler T, Hussain M I, López-Urrutia J R C, Dickel T, Ding S, Düllmann C E, Hudson E R, Kraemer S, Löbell L, Mokry C, Runke J, Seiferle B, Von DerWense L, Zacherl F and Thirolf P G 2025 Eur. Phys. J. D 79 127 [97] Zitzer G, Tiedau J, Okhapkin M V, Zhang K, Mokry C, Runke J, Düllmann Ch E and Peik E 2024 Phys. Rev. A 109 033116 [98] Zitzer G, Tiedau J, Düllmann Ch E, Okhapkin M V and Peik E 2025 Phys. Rev. A 111 L050802 [99] Li L, Li Z, Hua X and Tong X 2024 J. Phys. D: Appl. Phys. 57 315205 [100] Steele A V 2008 Barium Ion Cavity QED and Triply Ionized Thorium Ion Trapping (Ph. D. Dissertation) (Atlanta: Georgia Institute of Technology) [101] Wang C, Gan W T, Bai W L, Peng W C and Tong X 2026 J. Phys. D: Appl. Phys. 59 025205 [102] Churchill L R 2010 Trapping Triply Ionized Thorium Isotopes (Ph. D. Dissertation) (Atlanta: Georgia Institute of Technology) [103] Campbell C J 2011 Trapping, Laser Cooling, and Spectroscopy of Thorium IV (Ph. D. Dissertation) (Atlanta: Georgia Institute of Technology) [104] Telnov E Y, Borisyuk P V, Bukharskii N D, Korneev Ph A, Trichev K K and Cherepanov P A 2023 Rev. Sci. Instrum. 94 083302 [105] Kellerbauer A, Kim T, Moore R B and Varfalvy P 2001 Nucl. Instrum. Methods Phys. Res. A 469 276 [106] Itano W M, Bergquist J C, Bollinger J J and Wineland D J 1995 Phys. Scr. T59 106 [107] Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C and Tong X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035002 [108] Zhang Y, Zhang Q Y, Bai W L, Peng W C, He S G and Tong X 2023 Chin. J. Phys. 84 164 [109] Schwegler N, Holzapfel D, Stadler M, Mitjans A, Sergachev I, Home J P and Kienzler D 2023 Phys. Rev. Lett. 131 133003 [110] Yang Y N, Liu H, He Y H, Yang Z H, Wang M, Chen Y H, She L and Li J M 2014 Chin. Phys. B 23 093702 [111] Feldker T, Fürst H, Hirzler H, Ewald N V, Mazzanti M, Wiater D, Tomza M and Gerritsma R 2020 Nat. Phys. 16 413 [112] Trimby E, Hirzler H, Fürst H, Safavi-Naini A, Gerritsma R and Lous R S 2022 New J. Phys. 24 035004 [113] Xu Z S,Wang H M, Ba Z L and Liu H P 2022 Chin. Phys. B 31 073201 [114] Delahaye P 2019 Eur. Phys. J. A 55 83 [115] Ketterle W 2002 Rev. Mod. Phys. 74 1131 [116] Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q and Zhang J 2016 Nat. Phys. 12 540 [117] Langen T, Valtolina G, Wang D and Ye J 2024 Nat. Phys. 20 702 [118] Andreev V, Ang D G, DeMille D, Doyle J M, Gabrielse G, Haefner J, Hutzler N R, Lasner Z, Meisenhelder C, O’Leary B R, Panda C D, West A D, West E P and Wu X 2018 Nature 562 355 [119] Lü D S, RenW, Sun Y, Li T, Qu Q Z,Wang B, Li L, Zhao J B, Zhao X, Ji J W, Ye M F, Xiang J F, Chen W B, Wang Y Z and Liu L 2023 Natl. Sci. Rev. 10 nwac180 [120] Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C and Tong X 2023 Chin. Phys. B 32 036402 [121] Li Z, Gan W T, Wang C, Hua X and Tong X 2025 J. Appl. Phys. 138 224901 [122] Von Der Wense L, Bilous P V, Seiferle B, Stellmer S, Weitenberg J, Thirolf P G, Pálffy A and Kazakov G 2020 Eur. Phys. J. A 56 176 [123] Von Der Wense L and Zhang C 2020 Eur. Phys. J. D 74 146 [124] Li L, Li Z,Wang C, GanWT, Hua X and Tong X 2023 Nucl. Sci. Tech. 34 24 [125] Hiraki T, Masuda T, Takatori S, et al. 2025 arXiv:2509.00041 [nucl-ex] [126] Thielking J, Zhang K, Tiedau J, Zander J, Zitzer G, OkhapkinMV and Peik E 2023 New J. Phys. 25 083026 [127] Jeet J 2018 Search for the low lying transition in the 229Th nucleus (Ph. D. Dissertation) (Los Angeles: University of California) [128] Lal V, Okhapkin M V, Tiedau J, Irwin N, Petrov V and Peik E 2025 Optica 12 1971 [129] Xiao Q, Penyazkov G, Li X, Huang B, Bu W, Shi J, Shi H, Liao T, Yan G, Tian H, Li Y, Li J, Lu B, You L, Lin Y, Mo Y and Ding S 2025 arXiv:2507.19449 [physics.atom-ph] [130] Dubin D H E and O’Neil T M 1999 Rev. Mod. Phys. 71 87 [131] Kjærgaard N and Drewsen M 2003 Phys. Rev. Lett. 91 095002 [132] Zhang C, Li P, Jiang J, Von DerWense L, Doyle J F, Fermann M E and Ye J 2022 Opt. Lett. 47 5591 [133] Porsev S G and Flambaum V V 2010 Phys. Rev. A 81 032504 [134] Müller R A, Volotka A V, Fritzsche S and Surzhykov A 2017 Nucl. Instrum. Methods Phys. Res. B 408 84 [135] Bilous P V, Peik E and Pálffy A 2018 New J. Phys. 20 013016 [136] WangW, Zou F, Fritzsche S and Li Y 2024 Phys. Rev. Lett. 133 223001 [137] Strizhov V F and Tkalya E V 1991 Sov. Phys. JETP 72 387 [138] Harston M R and Chemin J F 1999 Phys. Rev. C 59 2462 [139] Pálffy A, Evers J and Keitel C H 2007 Phys. Rev. Lett. 99 172502 [140] Wang W, Zhou J, Liu B and Wang X 2021 Phys. Rev. Lett. 127 052501 [141] Wang X 2022 Phys. Rev. C 106 024606 [142] Schaden F, Riebner T, Morawetz I, De Col L T, Kazakov G A, Beeks K, Sikorsky T, Schumm T, Zhang K, Lal V, Zitzer G, Tiedau J, Okhapkin M V and Peik E 2025 Phys. Rev. Res. 7 L022036 [143] Terhune J E S, Elwell R, Tan H B T, Perera U C, Morgan H W T, Alexandrova A N, Derevianko A and Hudson E R 2025 Phys. Rev. Res. 7 L022062 [144] Morgan H W T, Tran Tan H B, Elwell R, Alexandrova A N, Hudson E R and Derevianko A 2025 Phys. Rev. Lett. 134 253801 [145] Tong X, Hua L, Hua X and Liu X 2025 Natl. Sci. Rev. 12 nwaf083 [146] Wang J, Miao H, Ding S and Liu D E 2025 arXiv:2508.10626 [quantph] |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|