Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 020603    DOI: 10.1088/1674-1056/ae13ee
SPECIAL TOPIC — Advances in thorium nuclear optical clocks Prev   Next  

Octupole correlations of the Kπ=5/2+ ground-state band in 229Th

Yuan-Yuan Wang(王媛媛) and Peng-Wei Zhao(赵鹏巍)
1 Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China;
2 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
Abstract  The octupole correlations of the $K^\pi=5/2^+$ ground state and the rotational spectrum built on it in $^{229}$Th are studied using the microscopic relativistic density functional theory on a three-dimensional lattice space and the reflection-asymmetric triaxial particle rotor model. It is found that $^{229}$Th has a ground state with static axial octupole and quadrupole deformations. The occurrence of octupole correlations, driven by the octupole deformation, is analyzed through the evolution of single-particle levels around the Fermi surface. The experimental energy spectrum and the electromagnetic transition probabilities, including $B(E2)$ and $B(M1)$, are reasonably well reproduced.
Keywords:  octupole correlation      relativistic density functional theory      reflection-asymmetric triaxial particle rotor model      rotational spectrum  
Received:  13 August 2025      Revised:  03 October 2025      Accepted manuscript online:  16 October 2025
PACS:  06.30.Ft (Time and frequency)  
  21.10.-k (Properties of nuclei; nuclear energy levels)  
  21.60.-n (Nuclear structure models and methods)  
  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  23.20.-g (Electromagnetic transitions)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12205097, 12141501, 12475117, and 12435006), the National Key Laboratory of Neutron Science and Technology (Grant No. NST202401016), the National Key R&D Program of China (Grant Nos. 2024YFA1612600 and 2024YFE0109803), and the High-performance Computing Platform of Peking University.

Cite this article: 

Yuan-Yuan Wang(王媛媛) and Peng-Wei Zhao(赵鹏巍) Octupole correlations of the Kπ=5/2+ ground-state band in 229Th 2026 Chin. Phys. B 35 020603

[1] Beck B R, Becker J A, Beiersdorfer P, Brown G V, Moody K J, Wilhelmy J B, Porter F S, Kilbourne C A and Kelley R L 2007 Phys. Rev. Lett. 98 142501
[2] Seiferle B, Wense L von der, Bilous P V, Amersdorffer I, Lemell C, Libisch F, Stellmer S, Schumm T, Düllmann C E, Pálffy A and Thirolf P G 2019 Nature 573 243
[3] Yamaguchi A, Muramatsu H, Hayashi T, Yuasa N, Nakamura K, Takimoto M, Haba H, Konashi K, Watanabe M, Kikunaga H, Maehata K, Yamasaki N Y and Mitsuda K 2019 Phys. Rev. Lett. 123 222501
[4] Sikorsky T, Geist J, Hengstler D, Kempf S, Gastaldo L, Enss C, Mokry C, Runke J, Düllmann C E, Wobrauschek P, Beeks K, Rosecker V, Sterba J H, Kazakov G, Schumm T and Fleischmann A 2020 Phys. Rev. Lett. 125 142503
[5] Kraemer S, Moens J, Athanasakis-Kaklamanakis M, et al. 2023 Nature 617 706
[6] Hiraki T, Okai K, Bartokos M, et al. 2024 Nat. Commun. 15 5536
[7] Elwell R, Schneider C, Jeet J, Terhune J E S, Morgan H W T, Alexandrova A N, Tran T H B, Derevianko A and Hudson E R 2024 Phys. Rev. Lett. 133 013201
[8] Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col L Toscani, Schneider F, Leitner A, Pressler M, Kazakov G A, Beeks K, Sikorsky T and Schumm T 2024 Phys. Rev. Lett. 132 182501
[9] Peik E and Tamm C 2003 Euro. Phys. Lett. 61 181
[10] Campbell C J, Radnaev A G, Kuzmich A, Dzuba V A, Flambaum V V and Derevianko A 2012 Phys. Rev. Lett. 108 120802
[11] Peik E, Schumm T, Safronova M, Pálffy A, Weitenberg J and Thirolf P G 2021 Quantum Sci. Technol. 6 034002
[12] Beeks K, Sikorsky T, Schumm T, Thielking J, Okhapkin M V and Peik E 2021 Nat. Rev. Phys. 3 238
[13] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[14] Tsai Y D, Eby J and Safronova M S 2023 Nat. Astro. 7 113
[15] Mehlstäubler T E, Grosche G, Lisdat C, Schmidt P O and Denker H 2018 Rep. Prog. Phys. 81 064401
[16] Flambaum V V 2006 Phys. Rev. Lett. 97 092502
[17] Fadeev P, Berengut J C and Flambaum V V 2020 Phys. Rev. A 102 052833
[18] Wense L von der and Seiferle B 2020 Eur. Phys. J. A 56 277
[19] Thirolf P G, Kraemer S, Moritz D and Scharl K 2024 Eur. Phys. J. Spec. Top. 233 1113
[20] Butler P A and Nazarewicz W 1996 Rev. Mod. Phys. 68 349
[21] Butler P A 2016 J. Phys. G: Nucl. Part. Phys. 43 073002
[22] Kroger L A and Reich C W 1976 Nucl. Phys. A 259 29
[23] Canty M J, Connor R D, Dohan D A and Pople B 1977 J. Phys. G: Nucl. Phys. 3 421
[24] Reich C W and Helmer R G 1990 Phys. Rev. Lett. 64 271
[25] Barci V, Ardisson G, Barci-Funel G, Weiss B, El Samad O and Sheline R K 2003 Phys. Rev. C 68 034329
[26] Gulda K, Kurcewicz W, Aas A J, et al. 2002 Nucl. Phys. A 703 45
[27] Ruchowska E, Płóciennik W A, · Zylicz J, et al. 2006 Phys. Rev. C 73 044326
[28] Bemis Jr C E, McGowan F K, Ford Jr J L C, Milner W T, Robinson R L, Stelson P H, Leander G A and Reich C W 1988 Phys. Scr. 38 657
[29] Burke D G, Garrett P E, Qu T and Naumann R A 1990 Phys. Rev. C 42 499
[30] Leander G A and Sheline R K 1984 Nucl. Phys. A 413 375
[31] Leander G A and Chen Y S 1988 Phys. Rev. C 37 2744
[32] Minkov N and Pálffy A 2017 Phys. Rev. Lett. 118 212501
[33] Minkov N and Pálffy A 2019 Phys. Rev. Lett. 122 162502
[34] Minkov N and Pálffy A 2021 Phys. Rev. C 103 014313
[35] Meng J 2016 Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics. Vol 10. (Singapore: World Scientifc)
[36] Bender M and Heenen P H 2003 Rev. Mod. Phys. 75 121
[37] Ring P 1996 Prog. Part. Nucl. Phys. 37 193
[38] Vretenar D, Afanasjev A V, Lalazissis G A and Ring P 2005 Phys. Rep. 409 101
[39] Meng J, Toki H, Zhou S G, Zhang S Q, Long W H and Geng L S 2006 Prog. Part. Nucl. Phys. 57 470
[40] Tanimura Y, Hagino K and Liang H Z 2015 Prog. Theor. Exp. Phys. 2015 073D01
[41] Ren Z X, Zhang S Q and Meng J 2017 Phys. Rev. C 95 024313
[42] Ren Z X, Zhang S Q, Zhao P W, Itagaki N, Maruhn J A and Meng J 2019 Sci. China Phys. Mech. Astron. 62 112062
[43] Hagino K and Tanimura Y 2010 Phys. Rev. C 82 057301
[44] Li B, Ren Z X and Zhao P W 2020 Phys. Rev. C 102 044307
[45] Xu F F, Li B, Ren Z X and Zhao P W 2024 Phys. Rev. C 109 014311
[46] Zhang D D, Ren Z X, Zhao P W, Vretenar D, Nikšić T and Meng J 2022 Phys. Rev. C 105 024322
[47] Ren Z X, Zhao P W and Meng J 2022 Phys. Rev. C 105 L011301
[48] Ren Z X, Zhao P W, Zhang S Q and Meng J 2020 Nucl. Phys. A 996 121696
[49] Xu F F, Li B, Ring P and Zhao P W 2024 Phys. Lett. B 856 138893
[50] Li Z K and Wang Y Y 2024 Nucl. Sci. Tech. 35 139
[51] Xu F F, Wang Y K, Wang Y P, Ring P and Zhao P W 2024 Phys. Rev. Lett. 133 022501
[52] Wang Y Y, Zhang S Q, Zhao P W and Meng J 2019 Phys. Lett. B 792 454
[53] Wang Y Y and Zhang S Q 2020 Phys. Rev. C 102 034303
[54] Wang Y P, Wang Y Y and Meng J 2020 Phys. Rev. C 102 024313
[55] Wang Y Y, Wu X H, Zhang S Q, Zhao P W and Meng J 2020 Sci. Bull. 65 2001
[56] Morse C, Macchiavelli A O, Crawford H L, et al. 2020 Phys. Rev. C 102 054328
[57] Rajbanshi S, Palit R, Raut R, Wang Y Y, Ren Z X, Meng J, Chen Q B, Ali Sajad, Pai H, Babra F S, Banik R, Bhattacharya S, Bhattacharyya S, Dey P, Malik S, Mukherjee G, Laskar Md S R, Nandi S, Santra Rajkumar, Trivedi T, Ghugre S S and Goswami A 2021 Phys. Rev. C 104 064316
[58] Wang Y Y 2021 Phys. Rev. C 104 014318
[59] Wang Y Y, Chen Q B and Zhang S Q 2022 Phys. Rev. C 105 044316
[60] Madhu, Deo A Y, Yadav Khamosh, Sahoo Dhananjaya, Wang Y Y, Wang Y K, Meng J, Suman Saket, Tandel S K, Sharma A, Ahmed I, Katre K, Devi K, Rojeeta, Dutt S, Kumar S, Yashraj, Muralithar S and Singh R P 2023 Phys. Rev. C 108 014309
[61] Wang Y Y, Peng J and Zhang S Q 2024 Phys. Rev. C 110 024315
[62] Wang Y Y and Zhang S Q 2025 Chin. Phys. C 49 014103
[63] Zhao P W, Li Z P, Yao J M and Meng J 2010 Phys. Rev. C 82 054319
[64] Hamamoto I 1976 Nucl. Phys. A 271 15
[65] Hamamoto I and Mottelson B 1983 Phys. Lett. B 127 281
[66] Zhang S Q, Qi B, Wang S Y and Meng J 2007 Phys. Rev. C 75 044307
[67] Nilsson S G 1955 Dan. Mat. Fys. Medd. 29 16
[68] Ring P and Schuck P 2004 The Nuclear Many-Body Problem (Berlin: Springer)
[69] Stephens F S, Kleinheinz P, Sheline R K and Simon R S 1974 Nucl. Phys. A 222 235
[70] Ward D, Macchiavelli A O, Clark R M, Cline D, Cromaz M, Deleplanque M A, Diamond R M, Fallon P, Gorgen A, Hayes A B, Lane G J, Lee I Y, Nakatsukasa T, Schmidt G, Stephens F S, Svensson C E, Teng R, Vetter K and Wu C Y 2012 Phys. Rev. C 86 064319
[71] http://www.nndc.bnl.gov/ensdf/
[72] http://www.nndc.bnl.gov/nudat2/
[1] ANALYSIS OF THE HDO ABSORPTION SPECTRUM BETWEEN 9600-10200cm-1
Wang Xiang-huai (王湘淮), He Sheng-gui (何圣贵), Hu Shui-ming (胡水明), Zheng Jing-jing (郑晶晶), Zhu Qing-shi (朱清时). Chin. Phys. B, 2000, 9(12): 885-891.
No Suggested Reading articles found!