Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027501    DOI: 10.1088/1674-1056/ae2c6b
TOPICAL REVIEW — Multiferroicity and multicaloric effects Prev  

Magnetoelectric topology: The rope weaving in parameter space

Ying Zhou(周颖), Ziwen Wang(王子文), Fan Wang(王凡), Haoshen Ye(叶浩燊), and Shuai Dong(董帅)†
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
Abstract  Topology, as a mathematical concept, has been introduced into condensed matter physics since the discovery of quantum Hall effect, which characterizes new physical scenario beyond the Landau theory. The topologically protected physical quantities, such as the dissipationless quantum transport of edge/surface states as well as magnetic/dipole quasi-particles like skyrmions/bimerons, have attracted great research enthusiasms in the past decades. In recent years, another kind of topology in condensed matter was revealed in the magnetoelectric parameter space of multiferroics, which deepens our understanding of magnetoelectric physics. This topical review summarizes recent advances in this area, involving three types of type-II multiferroics. With magnetism-induced ferroelectricity, topological behaviors can be manifested during the magnetoelectric switching processes driven by magnetic/electric fields, such as Roman-surface/Riemann-surface magnetoelectricity and magnetic crankshaft. These exotic topological magnetoelectric behaviors may be helpful to pursue energy-efficient and precise-control devices for spintronics and quantum computing.
Keywords:  magnetoelectricity      topology      winding number      multiferroicity  
Received:  13 October 2025      Revised:  27 November 2025      Accepted manuscript online:  15 December 2025
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  75.50.-y (Studies of specific magnetic materials)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12325401, 12274069, and 123B2053). We thank Profs. Yisheng Chai, Chenliang Lu, and Junting Zhang for their contributions to the original works reviewed here.
Corresponding Authors:  Shuai Dong     E-mail:  sdong@seu.edu.cn

Cite this article: 

Ying Zhou(周颖), Ziwen Wang(王子文), Fan Wang(王凡), Haoshen Ye(叶浩燊), and Shuai Dong(董帅) Magnetoelectric topology: The rope weaving in parameter space 2026 Chin. Phys. B 35 027501

[1] Armstrong M A 1983 Basic Topology (New York: Springer) pp. 1–26
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Nakahara M 2003 Geometry, Topology and Physics, 2nd Edn. (Boca Raton: Taylor & Francis) pp. 168–225
[4] Thouless D J, Kohmoto M, NightingaleMP and DennijsM1982 Phys. Rev. Lett. 49 405
[5] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[6] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[7] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[8] Wan X G, Dong J M and Savrasov S Y 2011 Phys. Rev. B 83 205101
[9] Wang K F, Graf D, Lei H C, Tozer SWand Petrovic C 2011 Phys. Rev. B 84 220401
[10] Sau J, Simon S, Vishveshwara S andWilliams J R 2020 Nat. Rev. Phys. 2 667
[11] Tschernig K, Jimenez-Galán A, Christodoulides D N, Ivanov M, Busch K, Bandres M A and Perez-Leija A 2021 Nat. Commun. 12 1974
[12] Tang S J, Zhang C F, Wong D, Pedramrazi Z, Tsai H Z, Jia C J, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D H, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y L, Ugeda M M, Liu Z, Xie X M, Devereaux T P, Crommie M F, Mo S K and Shen Z X 2017 Nat. Phys. 13 683
[13] Kou X F, Guo S T, Fan Y B, Pan L, Lang M R, Jiang Y, Shao Q M, Nie T X, Murata K, Tang J S, Wang Y, He L, Lee T K, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 137201
[14] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[15] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[16] Chauleau J Y, Chirac T, Fusil S, Garcia V, Akhtar W, Tranchida J, Thibaudeau P, Gross I, Blouzon C, Finco A, Bibes M, Dkhil B, Khalyavin D D, Manuel P, Jacques V, Jaouen N and Viret M 2020 Nat. Mater. 19 576
[17] Guo M F, Guo C Q, Han J, Chen S L, He S, Tang T X, Li Q, Strzalka J, Ma J, Yi S, Wang K, Xu B, Gao P, Huang H B, Chen L Q, Zhang S J, Lin Y H, Nan C W and Shen Y 2021 Science 371 1050
[18] Choi T, Horibe Y, Yi H T, Choi Y J, Wu W D and Cheong S W 2010 Nat. Mater. 9 253
[19] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
[20] Huang F T and Cheong S W 2017 Nat. Rev. Mater. 2 17004
[21] Tokura Y and Nagaosa N 2018 Nat. Commun. 9 3740
[22] Du K, Gao B, Wang Y Z, Xu X H, Kim J, Hu R W, Huang F T and Cheong S W 2018 Npj Quantum Mater. 3 33
[23] Liu G X, Pi M C, Zhou L, Liu Z H, Shen X D, Ye X B, Qin S J, Mi X R, Chen X, Zhao L, Zhou B W, Guo J, Yu X H, Chai Y S, Weng H M and Long Y W 2022 Nat. Commun. 13 2373
[24] Wang Z W, Chai Y S and Dong S 2023 Phys. Rev. B 108 L060407
[25] Ponet L, Artyukhin S, Kain T, Wettstein J, Pimenov A, Shuvaev A, Wang X, Cheong S W, Mostovoy M and Pimenov A 2022 Nature 607 81
[26] Zhou Y, Ye H S, Zhang J T and Dong S 2024 Phys. Rev. B 110 054424
[27] Wang H W, Wang F, Yang M, Chang Y T, Shi M Y, Li L, Liu J M, Wang J F, Dong S and Lu C L 2025 Phys. Rev. Lett. 134 016708
[28] Zhang J J, Lin L F, Zhang Y, Wu M H, Yakobson B I and Dong S 2018 J. Am. Chem. Soc. 140 9768
[29] Xiang H J, Kan E J,Wei S H, WhangboMH and Gong X G 2011 Phys. Rev. B 84 224429
[30] Xiang H J, Kan E J, Zhang Y, WhangboMH and Gong X G 2011 Phys. Rev. Lett. 107 157202
[31] Johnson R D, Chapon L C, Khalyavin D D, Manuel P, Radaelli P G and Martin C 2012 Phys. Rev. Lett. 108 067201
[32] Zhang G Q, Dong S, Yan Z B, Guo Y Y, Zhang Q F, Yunoki S, Dagotto E and Liu J M 2011 Phys. Rev. B 84 174413
[33] Lu X Z, Whangbo M H, Dong S, Gong X G and Xiang H J 2012 Phys. Rev. Lett. 108 187204
[34] Wang X, Chai Y S, Zhou L, Cao H B, Cruz C D, Yang J Y, Dai J H, Yin Y Y, Yuan Z, Zhang S J, Yu R Z, Azuma M, Shimakawa Y, Zhang H M, Dong S, Sun Y, Jin C Q and Long Y W2015 Phys. Rev. Lett. 115 087601
[35] Long Y W and Shimakawa Y 2010 New J. Phys. 12 063029
[36] Long Y W 2016 Chin. Phys. B 25 078108
[37] Shimakawa Y 2008 Inorg. Chem. 47 8562
[38] Long YW, Hayashi N, Saito T, Azuma M, Muranaka S and Shimakawa Y 2009 Nature 458 60
[39] Feng J S and Xiang H J 2016 Phys. Rev. B 93 174416
[40] Chai Y S, Chun S H, Cong J Z and Kim K H 2018 Phys. Rev. B 98 104416
[41] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[42] Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Iñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W and Ramesh R 2019 Nature 568 368
[43] Wang B, Zhang X W, Zhang Y H, Yuan S J, Guo Y, Dong S and Wang J L 2020 Mater. Horiz 7 1623
[44] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[45] Zhou Y, Ye H S, Zhang J T and Dong S 2024 Phys. Rev. Mater. 8 104403
[46] Hur N, Park S, Sharma P A, Guha S and Cheong S W 2004 Phys. Rev. Lett. 93 107207
[47] Higashiyama D, Miyasaka S, Kida N, Arima T and Tokura Y 2004 Phys. Rev. B 70 174405
[48] Abrahams S C and Bernstein J L 1967 J. Chem. Phys. 46 3776
[49] Hur N, Park S, Sharma P A, Ahn J S, Guha S and Cheong S W 2004 Nature 429 392
[50] Kim J W, Haam S Y, Oh Y S, Park S, Cheong S W, Sharma P A, Jaime M, Harrison N, Han J H, Jeon G S, Coleman P and Kim K H 2009 Proc. Natl. Acad. Sci. USA 106 15573
[51] Chapon L C, Radaelli P G, Blake G R, Park S and Cheong S W 2006 Phys. Rev. Lett. 96 097601
[52] Chapon L C, Blake G R, Gutmann M J, Park S, Hur N, Radaelli P G and Cheong S W 2004 Phys. Rev. Lett. 93 177402
[53] Giovannetti G and van den Brink J 2008 Phys. Rev. Lett. 100 227603
[54] Lee N, Vecchini C, Choi Y J, Chapon L C, Bombardi A, Radaelli P G and Cheong S W 2013 Phys. Rev. Lett. 110 137203
[55] Kim J H, van der Vegte M A, Scaramucci A, Artyukhin S, Chung J H, Park S, Cheong S W, Mostovoy M and Lee S H 2011 Phys. Rev. Lett. 107 097401
[56] Wang F, Zhou Y, Shen X F, Dong S and Zhang J T 2023 Phys. Rev. Appl. 20 064011
[57] Geng Y N, Das H, Wysocki A L, Wang X Y, Cheong S W, Mostovoy M, Fennie C J and Wu W D 2014 Nat. Mater. 13 163
[1] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[2] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[3] Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization
Yu Chen(陈羽), Wu-Hao Cao(曹吴昊), Jia-Qi Li(李嘉琦), Ming-Zhe Zhang(张明哲), Xin-Yi Du(杜欣怡), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2025, 34(4): 044205.
[4] Angle-resolved photoemission spectroscopy study on transition-metal kagome materials
Jiangang Yang(杨鉴刚), Jianwei Huang(黄建伟), Lin Zhao(赵林), and X. J. Zhou(周兴江). Chin. Phys. B, 2025, 34(4): 047101.
[5] Higher-order topology in twisted multilayer systems: A review
Chunbo Hua(花春波) and Dong-Hui Xu(许东辉). Chin. Phys. B, 2025, 34(3): 037301.
[6] SNSAlib: A python library for analyzing signed network
Ai-Wen Li(李艾纹), Jun-Lin Lu(陆俊霖), Ying Fan(樊瑛), and Xiao-Ke Xu(许小可). Chin. Phys. B, 2025, 34(3): 038902.
[7] Exceptional rings and non-Abelian topology in non-Hermitian high-spin systems
Peng-Zhen Sun(孙鹏震), Zhou-Tao Lei(雷周涛), and Yuan-Gang Deng(邓元刚). Chin. Phys. B, 2025, 34(11): 110303.
[8] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[9] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[10] Manipulation of internal blockage in triangular triple quantum dot
Yue Qi(齐月) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2024, 33(5): 057301.
[11] A Weibo local network growth model constructed from the perspective of following-followed
Fu-Zhong Nian(年福忠) and Ran-Qing Yao(姚然庆). Chin. Phys. B, 2024, 33(12): 128702.
[12] Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
Ya-Jie Zhang(张亚杰), Chao-Long Li(李潮龙), Jia-Qi Luan(栾迦淇), Ming Zhao(赵茗), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2024, 33(10): 104210.
[13] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[14] Optimization of communication topology for persistent formation in case of communication faults
Guo-Qiang Wang(王国强), He Luo(罗贺), Xiao-Xuan Hu(胡笑旋), and Jian-Wei Tai(台建玮). Chin. Phys. B, 2023, 32(7): 078901.
[15] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
No Suggested Reading articles found!