Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 023101    DOI: 10.1088/1674-1056/ae1f7b
TOPICAL REVIEW — Advances in thorium nuclear optical clocks Prev  

Towards a 229Th nuclear clock: Understanding nucleus-electron-environment interactions

Yan-Ling Xu(徐艳玲)1,2, Hong-Yuan Zheng(郑弘远)1,2, Xi-Chen Yu(喻希辰)1,2, Yong-Hui Zhang(张永慧)1, Ting-Yun Shi(史庭云)1, and Li-Yan Tang(唐丽艳)1,†
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Recent advances in atomic optical clocks based on electronic transitions have achieved frequency uncertainties at the $10^{-19}$ level, enabling wide applications in testing variations of physical constants, exploring dark matter signatures, and enhancing precision metrology for position, navigation, and timing systems. To pursue higher-precision optical clocks, the development of nuclear optical clocks has emerged, with the 229Th system distinguished by its unique low-lying isomeric state at $\sim8.4$ eV and a natural linewidth of approximately 100 μHz, promising uncertainties below $10^{-19}$. The intrinsic insensitivity of nuclear transitions to external perturbations and their subatomic-scale spatial confinement provide significant advantages over electronic transitions in mitigating environmental shifts. Recent experimental breakthroughs include the excitation of the nuclear clock transition in solid-state 229Th-doped crystals with spectral resolution at the kHz level. However, critical challenges persist, particularly in implementing effective laser excitation schemes (e.g., via the electronic bridge mechanism) and closed-loop quantum control in trapped ion systems. Addressing these requires comprehensive understanding of complex many-body interactions in 229Th, encompassing electronic structure, nuclear deformation, hyperfine and field shift, and solid-state environmental coupling. This review synthesizes recent advancements in (i) the characterization of nuclear and atomic structures of the 229Th nuclear clock, and (ii) precise evaluation and mitigation of external perturbations affecting the clock transitions. The analysis provides a solid theoretical and experimental foundation for optimizing 229Th-based nuclear clock performance.
Keywords:  229Th nuclear clock      electronic bridge      external field effects  
Received:  02 September 2025      Revised:  23 October 2025      Accepted manuscript online:  14 November 2025
PACS:  31.15.ac (High-precision calculations for few-electron (or few-body) atomic systems)  
  32.60.+i (Zeeman and Stark effects)  
  32.10.Fn (Fine and hyperfine structure)  
  27.90.+b (A ≥ 220)  
Fund: We thank Zong-Chao Yan for comments on the manuscript. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB0920100 and XDB0920101), the National Natural Science Foundation of China (Grant Nos. 12174402, 12393821, and 12274417), and the Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No. YSBR-055).
Corresponding Authors:  Li-Yan Tang     E-mail:  lytang@apm.ac.cn

Cite this article: 

Yan-Ling Xu(徐艳玲), Hong-Yuan Zheng(郑弘远), Xi-Chen Yu(喻希辰), Yong-Hui Zhang(张永慧), Ting-Yun Shi(史庭云), and Li-Yan Tang(唐丽艳) Towards a 229Th nuclear clock: Understanding nucleus-electron-environment interactions 2026 Chin. Phys. B 35 023101

[1] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[2] Aeppli A, Kim K,WarfieldW, SafronovaMS and Ye J 2024 Phys. Rev. Lett. 133 023401
[3] Marshall M C, Castillo D A R, Arthur-Dworschack W J, Aeppli A, Kim K, Lee D, Warfield W, Hinrichs J, Nardelli N V, Fortier T M, Ye J, Leibrandt D R and Hume D B 2025 Phys. Rev. Lett. 135 033201
[4] Ludlow A D, BoydMM, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[5] Gozzard D R, Howard L A, Dix-Matthews B P, Karpathakis S F E, Gravestock C T and Schediwy S W 2022 Phys. Rev. Lett. 128 020801
[6] Dimarcq N, Gertsvolf M, Mileti G, et al. 2024 Metrologia 61 012001
[7] Riehle F 2015 Comptes Rendus. Physique 16 506
[8] Lodewyck J 2019 Metrologia 56 055009
[9] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008
[10] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801
[11] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, SwannWC, Newbury N R, ItanoWM,Wineland D J and Bergquist J C 2008 Science 319 1808
[12] Fuchs E, Kirk F, Madge E, Paranjape C, Peik E, Perez G, Ratzinger W and Tiedau J 2025 Phys. Rev. X 15 021055
[13] Filzinger M, Dörscher S, Lange R, Klose J, Steinel M, Benkler E, Peik E, Lisdat C and Huntemann N 2023 Phys. Rev. Lett. 130 253001
[14] Boulder Atomic Clock Optical Network BACON Collaboration 2021 Nature 591 564
[15] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[16] Wcisło P, Ablewski P, Beloy K, et al. 2018 Sci. Adv. 4 eaau4869
[17] Xu G (ed) 2013 Sciences of Geodesy - II: Innovations and Future Developments (Berlin, Heidelberg: Springer Berlin Heidelberg)
[18] Zhao G, Xia J, Liu Y, et al. 2025 Chin. Phys. Lett. 42 063701
[19] Deng S, RenW, Xiang J, Zhao J, Li L, Zhang D,Wan J, Meng Y, Jiang X, Li T, Liu L and Lü D 2024 Chin. Phys. B 33 070602
[20] Kaplan E D and Hegarty C (eds) 2006 Understanding GPS: Principles and Applications (Boston: Artech House)
[21] Jin S (ed) 2012 Global Navigation Satellite Systems: Signal, Theory and Applications (Rijeka: IntechOpen)
[22] Campbell C J, Radnaev A G, Kuzmich A, Dzuba V A, Flambaum V V and Derevianko A 2012 Phys. Rev. Lett. 108 120802
[23] Beloy K 2023 Phys. Rev. Lett. 130 103201
[24] Peik E and Tamm C 2003 Europhys. Lett. 61 181
[25] Dzuba V A and Flambaum V V 2023 Phys. Rev. A 108 062813
[26] Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col L T, Schneider F, Leitner A, Pressler M, Kazakov G A, Beeks K, Sikorsky T and Schumm T 2024 Phys. Rev. Lett. 132 182501
[27] Elwell R, Schneider C, Jeet J, Terhune J E S, Morgan H W T, Alexandrova A N, Tran Tan H B, Derevianko A and Hudson E R 2024 Phys. Rev. Lett. 133 013201
[28] Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G A, Li P, Thirol P G, Schumm T and Ye J 2024 Nature 633 63
[29] Higgins J S, Ooi T, Doyle J F, Zhang C, Ye J, Beeks K, Sikorsky T and Schumm T 2025 Phys. Rev. Lett. 134 113801
[30] Das S, Pálffy A and Keitel C H 2013 Phys. Rev. C 88 024601
[31] Li L, Li Z, Wang C, Gan W T, Hua X and Tong X 2023 Nuc. Sci. Tech. 34 1698
[32] Campbell C J, Steele A V, Churchill L R, DePalatis M V, Naylor D E, Matsukevich D N, Kuzmich A and ChapmanMS 2009 Phys. Rev. Lett. 102 233004
[33] RellergertWG, DeMille D, Greco R R, HehlenMP, Torgerson J R and Hudson E R 2010 Phys. Rev. Lett. 104 200802
[34] Kazakov G A, Litvinov A N, Romanenko V I, Yatsenko L P, Romanenko A V, Schreitl M, Winkler G and Schumm T 2012 New J. Phys. 14 083019
[35] Beeks K, Sikorsky T, Schumm T, Thielking J, Okhapkin M V and Peik E 2021 Nat. Rev. Phys. 3 238
[36] Von Der Wense L and Seiferle B 2020 Eur. Phys. J. A 56 176
[37] Groot-Berning K, Stopp F, Jacob G, Budker D, Haas R, Renisch D, Runke J, Thörle-Pospiech P, Düllmann C E and Schmidt-Kaler F 2019 Phys. Rev. A 99 023420
[38] Flambaum V V 2006 Phys. Rev. Lett. 97 092502
[39] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[40] Porsev S G, Flambaum V V, Peik E and Tamm Chr 2010 Phys. Rev. Lett. 105 182501
[41] Porsev S G and Flambaum V V 2010 Phys. Rev. A 81 042516
[42] Bilous P V, Peik E and Palffy A 2018 New J. Phys. 20 013016
[43] Porsev S G, Cheung C and Safronova M S 2021 Quantum Sci. Technol. 6 034014
[44] Leander G and Sheline R 1984 Nuclear Physics A 413 375
[45] Gulda K, KurcewiczW, Aas A, Borge M, Burke D, Fogelberg B, Grant I, Hagebø E, Kaffrell N, Kvasil J, et al. 2002 Nuclear Physics A 703 45
[46] Flambaum V V and Wiringa R B 2009 Phys. Rev. C 79 034302
[47] Moore K T and van der Laan G 2009 Rev. Mod. Phys. 81 235
[48] Okhapkin M V, Meier D M, Peik E, Safronova M S, Kozlov M G and Porsev S G 2015 Phys. Rev. A 92 020503
[49] Minkov N and Pálffy A 2017 Phys. Rev. Lett. 118 212501
[50] Zhang H and Wang X 2023 Front. Phys. 11 1166566
[51] Kozioł K and Rzadkiewicz J 2025 Phys. Rev. C 111 064302
[52] Herrera-Sancho O A, Nemitz N, Okhapkin M V and Peik E 2013 Phys. Rev. A 88 012512
[53] Kroger L A and Reich C W 1976 Nuclear Physics A 259 29
[54] Reich C W and Helmer R G 1990 Phys. Rev. Lett. 64 271
[55] Helmer R G and Reich C W 1994 Phys. Rev. C 49 1845
[56] Beck B R, Becker J A, Beiersdorfer P, Brown G V, Moody K J, Wilhelmy J B, Porter F S, Kilbourne C A and Kelley R L 2007 Phys. Rev. Lett. 98 142501
[57] Beck B, Wu C, Beiersdorfer P, Brown G, Becker J, Moody K, Wilhelmy J, Porter F, Kilbourne C and Kelley R 2009 Proc. 12th International Conference on Nuclear Reaction Mechanisms LLNL-PROC- 415170 (Varenna, Italy)
[58] Seiferle B, Von Der Wense L, Bilous P V, Amersdorffer I, Lemell C, Libisch F, Stellmer S, Schumm T, Düllmann C E, Pálffy A and Thirolf P G 2019 Nature 573 243
[59] Kraemer S, Moens J, Athanasakis-Kaklamanakis M, et al. 2023 Nature 617 706
[60] Yamaguchi A, Muramatsu H, Hayashi T, Yuasa N, Nakamura K, Takimoto M, Haba H, Konashi K, Watanabe M, Kikunaga H, Maehata K, Yamasaki N Y and Mitsuda K 2019 Phys. Rev. Lett. 123 222501
[61] Sikorsky T, Geist J, Hengstler D, Kempf S, Gastaldo L, Enss C, Mokry C, Runke J, Düllmann C E, Wobrauschek P, Beeks K, Rosecker V, Sterba J H, Kazakov G, Schumm T and Fleischmann A 2020 Phys. Rev. Lett. 125 142503
[62] Hiraki T, Okai K, Bartokos M, et al. 2024 Nat. Commun. 15 5536
[63] Zhang C, Von Der Wense L, Doyle J F, Higgins J S, Ooi T, Friebel H U, Ye J, Elwell R, Terhune J E S, Morgan H W T, Alexandrova A N, Tran Tan H B, Derevianko A and Hudson E R 2024 Nature 636 603
[64] Elwell R, Terhune J E S, Schneider C, Morgan H W T, Tan H B T, Perera U C, Rehn D A, Alfonso M C, von der Wense L, Seiferle B, Scharl K, Thirolf P G, Derevianko A and Hudson E R 2025 Nature 648 300
[65] Yamaguchi A, Shigekawa Y, Haba H, Kikunaga H, Shirasaki K, Wada M and Katori H 2024 Nature 629 62
[66] Schwartz C 1955 Phys. Rev. 97 380
[67] Wang W and Wang X 2024 Phys. Rev. Lett. 133 032501
[68] Müller R A, Maiorova A V, Fritzsche S, Volotka A V, Beerwerth R, Glowacki P, Thielking J, Meier D M, Okhapkin M, Peik E and Surzhykov A 2018 Phys. Rev. A 98 020503
[69] Li F C, Qiao H X, Tang Y B and Shi T Y 2021 Phys. Rev. A 104 062808
[70] Minkov N and Pálffy A 2019 Phys. Rev. Lett. 122 162502
[71] Campbell C J, Radnaev A G and Kuzmich A 2011 Phys. Rev. Lett. 106 223001
[72] Zitzer G, Tiedau J, Düllmann C E, Okhapkin M V and Peik E 2025 Phys. Rev. A 111 L050802
[73] Thielking J, Okhapkin M V, Glowacki P, Meier D M, von derWense L, Seiferle B, Duellmann C E, Thirolf P G and Peik E 2018 Nature 556 321
[74] Fadeev P, Berengut J C and Flambaum V V 2020 Phys. Rev. A 102 052833
[75] Safronova M S, Safronova U I, Radnaev A G, Campbell C J and Kuzmich A 2013 Phys. Rev. A 88 060501
[76] Chasman R R, Ahmad I, Friedman A M and Erskine J R 1977 Rev. Mod. Phys. 49 833
[77] Berengut J C, Dzuba V A, Flambaum V V and Porsev S G 2009 Phys. Rev. Lett. 102 210801
[78] Bemis C E, McGowan F K, Jr J L C F, Milner W T, Robinson R L, Stelson P H, Leander G A and Reich C W 1988 Phys. Scr. 38 657
[79] Safronova M S and Safronova U I 2013 Phys. Rev. A 87 062509
[80] Dzuba V A and Flambaum V V 2023 Phys. Rev. Lett. 131 263002
[81] Thirolf P G, Kraemer S, Moritz D and Scharl K 2024 Eur. Phys. J. Spec. Top. 233 1113
[82] Peik E, Schumm T, Safronova M S, Palffy A, Weitenberg J and Thirolf P G 2021 Quantum Sci. Technol. 6 034002
[83] Roberts B M, Dzuba V A and Flambaum V V 2013 Phys. Rev. A 88 012510
[84] Safronova M S, Safronova U I and Clark C W 2014 Phys. Rev. A 90 032512
[85] Keele J A, Lundeen S R and Fehrenbach C W 2011 Phys. Rev. A 83 062509
[86] Bruneau J 1983 J. Phys. B: At. Mol. Phys. 16 4135
[87] Denis-Petit D, Gosselin G, Hannachi F, Tarisien M, Bonnet T, Comet M, Gobet F, Versteegen M, Morel P, Méot V and Matea I 2017 Phys. Rev. C 96 024604
[88] Desclaux J P 1989 AIP Conference Proceedings 189 265
[89] Desclaux J 1975 Computer Physics Communications 9 31
[90] Zubova N A, Anisimova I S, Kaygorodov M Y, Kozhedub Y S, Malyshev A V, Shabaev V M, Tupitsyn I I, Plunien G, Brandau C and Stöhlker T 2019 J. Phys. B: At. Mol. Phys. 52 185001
[91] Si R, Shi C, Xue N, Kong X, Chen C, Tu B and Ma Y G 2025 Sci. China Phys. Mech. Astron. 68 272011
[92] Kitovien·e L, Gaigalas G, Rynkun P, Domoto N, Tanaka M and Kato D 2025 Mon. Not. R. Astron. Soc. 538 92
[93] Dzuba V A 2005 Phys. Rev. A 71 062501
[94] Dzuba V A, Flambaum V V and Kozlov M G 1996 Phys. Rev. A 54 3948
[95] Safronova U I, Johnson W R and Safronova M S 2007 Phys. Rev. A 76 042504
[96] Savukov I M 2020 Atoms 8 87
[97] Yu S C, Gan W T, Hua X, Tong X and Li C B 2024 Phys. Rev. A 109 063115
[98] Blundell S A, JohnsonWR and Sapirstein J 1991 Phys. Rev. A 43 3407
[99] Li F C, Tang Y B, Qiao H X and Shi T Y 2021 J. Phys. B: At. Mol. Phys. 54 145004
[100] Li F, Ma H and Tang Y B 2021 J. Phys. B: At. Mol. Phys. 54 065003
[101] Safronova U I, Johnson W R and Safronova M S 2006 Phys. Rev. A 74 042511
[102] Tang Y B, Gao N N, Lou B Q and Shi T Y 2018 Phys. Rev. A 98 062511
[103] Safronova M S, Safronova U I and Kozlov M G 2018 Phys. Rev. A 97 012511
[104] Safronova M S, Porsev S G, Kozlov M G, Thielking J, Okhapkin M V, Głowacki P, Meier D M and Peik E 2018 Phys. Rev. Lett. 121 213001
[105] Gamrath S, Godefroid M R, Palmeri P, Quinet P and Wang K 2020 Monthly Notices of the Royal Astronomical Society 496 4507
[106] Flambaum V V, Dzuba V A and Peik E 2025 Phys. Rev. A 112 023103
[107] Mazzone G, Michelini M D C, Russo N and Sicilia E 2008 Inorg. Chem. 47 2083
[108] Biémont E, Fivet V and Quinet P 2004 J. Phys. B: Atom. Mol. Opt. Phys. 37 4193
[109] Migdalek J and Glowacz-Proszkiewicz A 2007 J. Phys. B 40 4143
[110] Gossel G H, Dzuba V A and Flambaum V V 2013 Phys. Rev. A 88 034501
[111] Safronova U I, Safronova M S and Johnson W R 2017 Phys. Rev. A 95 042507
[112] Li F C, Qiao H X, Tang Y B and Shi T Y 2022 J. Quant. Spectrosc. Radiat. Transf. 288 108241
[113] Eliav E and Kaldor U 2012 Chem. Phys. 392 78
[114] S Fraga J K and Saxena K Elsevier, Amsterdam, 1976 Handbook of Atomic Data (Amsterdam: Elsevier)
[115] Lim I S and Schwerdtfeger P 2004 Phys. Rev. A 70 062501
[116] Safronova U I and Safronova M S 2011 Phys. Rev. A 84 052515
[117] Tkalya E V and Nikolaev A V 2016 Phys. Rev. C 94 014323
[118] Yerokhin V A and Surzhykov A 2019 J. Phys. Chem. Ref. Data 48 033104
[119] Kramida A, Ralchenko Y, Reader J and NIST ASD Team NIST Atomic Spectra Database
[120] Porsev S G and Flambaum V V 2010 Phys. Rev. A 81 032504
[121] Karpeshin F F, Wycech S, Band I M, Trzhaskovskaya M B, Pfützner M and · Zylicz J 1998 Phys. Rev. C 57 3085
[122] Paris-Saclay U 2023 Lac database
[123] Dzuba V A and Flambaum V V 2016 Phys. Rev. A 93 052517
[124] Torbohm G, Fricke B and Rosén A 1985 Phys. Rev. A 31 2038
[125] Perera U C, Morgan HWT, Hudson E R and Derevianko A 2025 Phys. Rev. Lett.135 123001
[126] Itano W M 2000 J. Res. Natl. Inst. Stand. Technol. 105 829
[127] Gan H C J, Maslennikov G, Tseng KW, Tan T R, Kaewuam R, Arnold K J, Matsukevich D and Barrett M D 2018 Phys. Rev. A 98 032514
[128] RellergertWG, Sullivan S T, DeMille D, Greco R R, HehlenMP, Jackson R A, Torgerson J R and Hudson E R 2010 IOP Conf. Ser. Mater. Sci. Eng. 15 012005
[129] Stellmer S, Kazakov G, Schreitl M, Kaser H, Kolbe M and Schumm T 2018 Phys. Rev. A 97 062506
[130] Morgan H W T, Tan H B T, Elwell R, Alexandrova A N, Hudson E R and Derevianko A 2025 Phys. Rev. Lett. 134 253801
[131] Terhune J E S, Elwell R, Tan H B T, Perera U C, Morgan H W T, Alexandrova A N, Derevianko A and Hudson E R 2025 Phys. Rev. Res. 7 L022062
[132] Dessovic P, Mohn P, Jackson R A, Winkler G, Schreitl M, Kazakov G and Schumm T 2014 J. Phys. Condens. Matter 26 105402
[133] Dubé P, Madej A A, Bernard J E, Marmet L, Boulanger J S and Cundy S 2005 Phys. Rev. Lett. 95 033001
[134] Huang Y, Zhang B, Zeng M, Hao Y, Ma Z, Zhang H, Guan H, Chen Z, Wang M and Gao K 2022 Phys. Rev. Appl. 17 034041
[135] Chiara C J, Carroll J J, CarpenterMP, Greene J P, Hartley D J, Janssens R V F, Lane G J, Marsh J C, Matters D A, Polasik M, Rzadkiewicz J, Seweryniak D, Zhu S, Bottoni S, Hayes A B and Karamian S A 2018 Nature 554 216
[136] Wu Y, Gunst J, Keitel C H and Pálffy A 2018 Phys. Rev. Lett. 120 052504
[137] Qi J, Zhang H and Wang X 2023 Phys. Rev. Lett. 130 112501
[138] Wang W, Zhou J, Liu B and Wang X 2021 Phys. Rev. Lett. 127 052501
[139] Wang X 2022 Phys. Rev. C 106 024606
[140] Wang W and Wang X 2023 Phys. Rev. Res. 5 043232
[141] Bilous P V, Minkov N and Pálffy A 2018 Phys. Rev. C 97 044320
[142] Meier D M, Thielking J, Głowacki P, Okhapkin M V, Müller R A, Surzhykov A and Peik E 2019 Phys. Rev. A 99 052514
[143] WangW, Zou F, Fritzsche S and Li Y 2024 Phys. Rev. Lett.133 223001
[144] Dzuba V A and Flambaum V V 2025 Phys. Rev. A 111 053109
[145] Dzuba V A and Flambaum V V 2025 Phys. Rev. A 111 L041103
[146] Müller R A, Volotka A V and Surzhykov A 2019 Phys. Rev. A 99 042517
[147] Bilous P V, Bekker H, Berengut J C, Seiferle B, von der Wense L, Thirolf P G, Pfeifer T, López-Urrutia J R C and Pálffy A 2020 Phys. Rev. Lett. 124 192502
[148] Wang W, Fritzsche S and Li Y 2025 Phys. Rev. A 112 022811
[1] Precision calculation of 4,6,8He isotope shifts
Xiao-Qiu Qi(戚晓秋), Xing-Han Dong(董星汉), Fang-Fei Wu(吴芳菲), Zong-Chao Yan(严宗朝), Li-Yan Tang(唐丽艳), Zhen-Xiang Zhong(钟振祥), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2025, 34(11): 113101.
[2] Three-body physics under dissipative spin-orbit coupling
Xi Zhao(赵茜). Chin. Phys. B, 2025, 34(3): 033101.
[3] Relativistic hyperpolarizabilities of atomic H, Li, and Be+ systems
Shan-Shan Lu(卢闪闪), Hong-Yuan Zheng(郑弘远), Zong-Chao Yan(严宗朝), James F. Babb, and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2025, 34(2): 023202.
[4] Geometric properties of the first singlet S-wave excited state of two-electron atoms near the critical nuclear charge
Tong Chen(陈彤), Sanjiang Yang(杨三江), Wanping Zhou(周挽平), Xuesong Mei(梅雪松), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2024, 33(10): 103101.
[5] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[6] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[7] Transition parameters of Li-like ions (Z=7-11) in dense plasmas
Xiang-Fu Li(李向富), Li-Ping Jia(贾利平), Hong-Bin Wang(王宏斌), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(5): 053102.
[8] Non-Born-Oppenheimer study of the muonic molecule ion 4Heμ+
Hang Yang(杨航), Meng-Shan Wu(吴孟山), Yi Zhang(张屹), Ting-Yun Shi(史庭云), Kalman Varga, Jun-Yi Zhang(张俊义). Chin. Phys. B, 2020, 29(4): 043102.
[9] Relativistic calculations of fine-structure energy levels of He-like Ar in dense plasmas
Xiang-Fu Li(李向富), Gang Jiang(蒋刚). Chin. Phys. B, 2018, 27(7): 073101.
[10] Atomic structure and transition properties of H-like Al in hot and dense plasmas
Xiang-Fu Li(李向富), Gang Jiang(蒋刚), Hong-Bin Wang(王宏斌), Qian Sun(孙乾). Chin. Phys. B, 2017, 26(1): 013101.
[11] Calculations of the dynamic dipole polarizabilities for the Li+ ion
Yong-Hui Zhang(张永慧), Li-Yan Tang(唐丽艳), Xian-Zhou Zhang(张现周), Ting-Yun Shi(史庭云). Chin. Phys. B, 2016, 25(10): 103101.
[12] Tune-out wavelengths for the alkaline-metal atoms
Wei-Wei Yu(于伟威), Rong-Mei Yu(于荣梅), Yong-Jun Cheng(程勇军) and Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(2): 023101.
[13] Influence of a strong magnetic field on the hydrogen molecular ion using B-spline-type basis-sets
Zhang Yue-Xia (张月霞), Zhang Xiao-Long (张小龙). Chin. Phys. B, 2015, 24(12): 123101.
[14] High-precision spectroscopy of hydrogen molecular ions
Zhong Zhen-Xiang (钟振祥), Tong Xin (童昕), Yan Zong-Chao (严宗朝), Shi Ting-Yun (史庭云). Chin. Phys. B, 2015, 24(5): 053102.
[15] Precision calculation of fine structure in helium and Li+
Zhang Pei-Pei (张佩佩), Zhong Zhen-Xiang (钟振祥), Yan Zong-Chao (严宗朝), Shi Ting-Yun (史庭云). Chin. Phys. B, 2015, 24(3): 033101.
No Suggested Reading articles found!