| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Janus effect of inter-orbital hybridization on correlation strength of strongly correlated systems: A dynamical mean-field study |
| Jian Sun(孙健)1,†, Yinchang Zhao(赵银昌)2, and Chao Lian(廉超)3 |
1 School of Mathematics, Physics, and Statistics, Shanghai Polytechnic University, Shanghai 201209, China; 2 Department of Physics, Yantai University, Yantai 264005, China; 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract In multi-orbital systems, the correlation strength is typically attributed to Coulomb interactions and Hund's couplings. However, this study demonstrates that on-site inter-orbital hybridization can also significant influence the correlation strength of the system. We investigate the impact of on-site inter-orbital hybridization on the correlation strength of a two-orbital Hubbard model on a square lattice using the dynamical mean-field theory combined with Lanczos exact diagonalization. Our findings reveal a distinct Janus effect: on-site inter-orbital hybridization enhances correlation strength in the non-half-filled regime while suppresses it at half-filling. This dual role of on-site inter-orbital hybridization provides a fundamental mechanism for tuning the strength of correlations in multi-orbital systems.
|
Received: 31 March 2025
Revised: 14 July 2025
Accepted manuscript online: 16 July 2025
|
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
| |
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
| |
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174327) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2023ZD09). |
Corresponding Authors:
Jian Sun
E-mail: sunjian@sspu.edu.cn
|
Cite this article:
Jian Sun(孙健), Yinchang Zhao(赵银昌), and Chao Lian(廉超) Janus effect of inter-orbital hybridization on correlation strength of strongly correlated systems: A dynamical mean-field study 2026 Chin. Phys. B 35 027103
|
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc 130 3296 [2] Hsu T, Luo J, Yeh K, Chen T, Huang T, Wu P M, Lee Y, Huang Y, Chu Y, Yan D and Wu M 2008 Proc. Natl. Acad. Sci. USA 105 14262 [3] Stewart G R 2011 Rev. Mod. Phys. 83 1589 [4] Li J and Wang Y P 2008 Chin. Phys. Lett. 25 2232 [5] Jiang Q, Kang Y T and Yao D X 2013 Chin. Phys. B 22 087402 [6] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P,Wang B, Cheng J, Yao D, Zhang G and Wang M 2023 Nature 621 493 [7] Wang Y, Jiang K, Wang Z, Zhang F C and Hu J 2024 Phys. Rev. B 110 205122 [8] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y and Cheng J G 2024 Phys. Rev. X 14 011040 [9] Zhang M, Zhang Y, Guo H and Yang F 2021 Chin. Phys. B 30 108204 [10] Wang M,Wen H H,Wu T, Yao D X and Xiang T 2021 Chin. Phys. Lett. 41 077402 [11] Jiang K, Wang Z and Zhang F C 2024 Chin. Phys. Lett. 41 017402 [12] Nakatsuji S, Hall D, Balicas L, Fisk Z, Sugahara K, Yoshioka M and Maeno Y 2003 Phys. Rev. Lett. 90 137202 [13] Anisimov V I, Nekrasov I A, Kondakov D E, Rice T M and Sigrist M 2002 Eur. Phys. J. B 25 191 [14] Castellani C, Natoli C R and Ranninger J 1978 Phys. Rev. B 18 4945 [15] Grieger D and Fabrizio M 2015 Phys. Rev. B 92 075121 [16] Neupane M, Richard P, Pan Z H, Xu Y M, Jin R, Mandrus D, Dai X, Fang Z, Wang Z and Ding H 2009 Phys. Rev. Lett. 103 097001 [17] Medici L d, Georges A and Biermann S 2005 Phys. Rev. B 72 205124 [18] Song Y and Zou L J 2005 Phys. Rev. B 72 085114 [19] Wang Y L, Huang L, Du L and Dai X 2005 Chin. Phys. B 25 037103 [20] Werner P and Millis A J 2007 Phys. Rev. Lett. 99 126405 [21] Georges A, de’Medici L and Mravlje J 2013 Annu. Rev. Condens. Matter Phys. 4 137 [22] Stadler K M, Kotliar G,Weichselbaum A and Delft J V 2019 Ann. Phys. 405 365 [23] De’Medici L, Mravlje J and Georges A 2011 Phys. Rev. Lett. 107 256401 [24] Matt C E, Sutter D, Cook A M, et al. 2018 Nat. Commun. 9 972 [25] Haule K and Kotliar G 2009 New J. Phys. 11 025021 [26] Yu R, Zhu J X and Si Q M 2018 Phys. Rev. Lett. 121 227003 [27] Kusunose H, Yotsuhashi S and Miyake K 2000 Phys. Rev. B 62 4403 [28] Friedt O, Braden M, André G, Adelmann P, Nakatsuji S and Maeno Y 2001 Phys. Rev. B 63 174432 [29] Stanescu T D, Galitski V and Das Sarma S 2008 Phys. Rev. B 78 195114 [30] Qu X Z, Qu D W, Yi X W, Li W and Su G 2023 arXiv:2404.11369 [cond-mat] [31] Kugler F B and Kotliar G 2022 Phys. Rev. Lett. 129 096403 [32] Nunez-Fernandez Y and Hallberg K 2018 J. Phys.: Conf. Ser. 1041 012002 [33] Yu R and Si Q M 2017 Phys. Rev. B 96 125110 [34] Huang J, Yu R, Xu Z, et al. 2022 Commun. Phys. 5 29 [35] Koga A, Kawakami N, Rice T M and Sigrist M 2005 Phys. Rev. B 72 045128 [36] Winograd E A and de’Medici L 2014 Phys. Rev. B 89 085127 [37] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13 [38] Liebsch A and Ishida H 2011 J. Phys.: Condens. Matter 24 053201 [39] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865 [40] Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395 [41] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349 [42] Caffarel M and Krauth W 1994 Phys. Rev. Lett. 72 1545 [43] Dagotto E 1994 Rev. Mod. Phys. 66 763 [44] Sun J, Liu Y and Song Y 2016 Acta Phys. Sin. 64 247101 (in Chinese) [45] Mahan G D 2000 Many-Particle Physics, 3nd edn. (New York: Springer) pp. 71–75 [46] Manini N, Santoro G E, Corso A D and Tosatti E 2002 Phys. Rev. B 66 115107 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|