| TOPICAL REVIEW — Advances in thorium nuclear optical clocks |
Prev
|
|
|
Progresses on Th-doped materials for solid-state nuclear clock |
| Cheng-Chun Zhao(赵呈春)1,2, Lin Li(李琳)1,2, Shan-Ming Li(李善明)1,2, Qiao-Rui Gong(龚巧瑞)1,2, Pei-Xiong Zhang(张沛雄)1,3,†, Yin Hang(杭寅)1,2,‡, Long-Sheng Ma(马龙生)4, and Shi-Ning Zhu(祝世宁)5 |
1 Research Center of Laser Crystal, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; 4 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; 5 National Laboratory of Solid-State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
|
|
Abstract The isomeric transition of thorium-229 (229Th), as the only known laser-accessible nuclear transition, offers the possibility for the development of a new generation of optical clocks. Solid-state nuclear optical clock based on 229Th-doped crystals or thin films has attracted much attention due to its potential advantages in high stability, miniaturization, and robustness. This paper reviews the research progress of solid-state nuclear optical clock materials, analyzes the preparation, defects, and properties of the candidate solid material systems for 229Th, explores the influence of the local crystal environment on the nuclear transition, focuses on introducing the latest research results of crystal materials such as Th-doped CaF2 and LiSrAlF6, and looks forward to the future development direction of this field. It could provide a reference for the material selection and optimization of solid-state nuclear optical clocks.
|
Received: 31 August 2025
Revised: 14 November 2025
Accepted manuscript online: 19 November 2025
|
|
PACS:
|
06.30.Ft
|
(Time and frequency)
|
| |
91.60.Ed
|
(Crystal structure and defects, microstructure)
|
| |
91.60.Mk
|
(Optical properties)
|
|
| Fund: This work was supported by Zhangjiang Laboratory (Grant No. ZJSP21A001D), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0920000), and the National Natural Science Foundation of China (Grant Nos. 12341402 and 12341403). |
Corresponding Authors:
Pei-Xiong Zhang, Yin Hang
E-mail: pxzhang@jnu.edu.cn;yhang@siom.ac.cn
|
Cite this article:
Cheng-Chun Zhao(赵呈春), Lin Li(李琳), Shan-Ming Li(李善明), Qiao-Rui Gong(龚巧瑞), Pei-Xiong Zhang(张沛雄), Yin Hang(杭寅), Long-Sheng Ma(马龙生), and Shi-Ning Zhu(祝世宁) Progresses on Th-doped materials for solid-state nuclear clock 2026 Chin. Phys. B 35 020602
|
[1] Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E and Schumm T 2024 Phys. Rev. Lett. 132 182501 [2] Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran Tan H, Derevianko A and Hudson E 2024 Phys. Rev. Lett. 133 013201 [3] Peik E and Tamm C 2003 Europhys. Lett. 61 181 [4] Peik E, Zimmermann K, Okhapkin M and Tamm C 2009 Frequency Standards and Metrology 532 [5] Campbell C J, Radnaev A G, Kuzmich A, Dzuba V, Flambaum V and Derevianko A 2012 Phys. Rev. Lett. 108 120802 [6] Peik E, Schumm T, Safronova M S, Pálffy A, Weitenberg J and Thirolf P G 2021 Quantum Sci. Technol. 6 034002 [7] Yamaguchi A, Shigekawa Y, Haba H, Kikunaga H, Shirasaki K, Wada M and Katori H 2024 Nature 629 62 [8] RellergertWG, Sullivan S T, DeMille D, Greco R R, HehlenMP, Jackson R A, Torgerson J R and Hudson E R 2010 IOP Conf. Ser: Mater. Sci. Eng. 15 012005 [9] Kazakov G A, Litvinov A N, Romanenko V I, Yatsenko L P, Romanenko A V, Schreitl M, Winkler G and Schumm T 2012 New J. Phys. 14 083019 [10] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G and Wineland D J 1993 Phys. Rev. A 47 3554 [11] Nickerson B S, Pimon M, Bilous P V, Gugler J, Beeks K, Sikorsky T, Mohn P, Schumm T and Pálffy A 2020 Phys. Rev. Lett. 125 032501 [12] L von der Wense L and Seiferle B 2020 Eur. Phys. J. A 56 277 [13] Beeks K, Sikorsky T, Schumm T, Thielking J, Okhapkin M and Peik E 2021 Nat. Rev. Phys. 3 238 [14] Alvarez R 2013 Sci. Glob. Secur. 21 53 [15] Jeet J, Schneider C, Sullivan S T, Rellergert W, Mirzadeh S, Cassanho A, Jenssen H, Tkalya E and Hudson E 2015 Phys. Rev. Lett. 114 253001 [16] Beeks K, Sikorsky T, Rosecker V, Pressler M, Schaden F, Werban D, Hosseini N, Rudischer L, Schneider F, Berwian P, Friedrich J, Hainz D, Welch J, Sterba J H, Kazakov G and Schumm T 2023 Sci. Rep. 13 3897 [17] Gong Q, Zhao C, Tao S, Hang Y, Zhu S and Ma L 2023 Adv. Opt. Mater. 11 2202327 [18] Gong Q, Tao S L, Li S, Deng G, Zhao C and Hang Y 2024 Phys. Rev. A 109 033109 [19] Gong Q, Tao S, Zhao C, Hang Y, Zhu S and Ma L 2024 Inorg. Chem. 63 3807 [20] Gong Q, Li L, Li S, Zhang S, Tao S, Deng G, Zhang P, Zhao C, Hang Y, Zhu S and Ma L 2025 Opt. Lett. 50 2290 [21] Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia J G M, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lica R, Magchiels G, Manea V, Merckling C, Pereira L M C, Raeder S, Schumm T, Sels S, Thirolf P G, Tunhuma S M, Van Den Bergh P, Van Duppen P, Vantomme A, Verlinde M, Villarreal R and Wahl U 2023 Nature 617 706 [22] Zhang C, von der Wense L, Doyle J F, Higgins J S, Ooi T, Friebel U U, Ye J, Elwell R, Terhune J, Morgan H, Alexandrova A, Tran Tan H, Derevianko A and Hudson E R 2024 Nature 636 603 [23] Elwell R, Terhune J E S, Schneider C, MorganWT, Tran Tan H B, Perera U C, Rehn D A, Alfonso M C, von der Wense L, Seiferle B, Scharl K, Thirolf P G, Derevianko A and Hudson E R 2025 arXiv:2506.03018 [24] Beeks K, Sikorsky T, Schaden F, Pressler M, Schneider F, Koch B N and Schumm T 2024 Phys. Rev. B 109 094111 [25] Beeks K 2022 The Nuclear Excitation of Thorium-229 in the CaF2 Environment (Ph.D. Dissertation) (Vienna: Vienna University of Technology) [26] Weber W J 1983 Radiation Effects 70 217 [27] Nickerson B S, Pimon M, Bilous P V, Gugler J, Kazakov G A, Sikorsky T, Beeks K and Grüneis A 2021 Phys. Rev. A 103 053120 [28] Seiferle B, von der Wense L, Bilous P V, Amersdorffer I, Lemell C, Libisch F, Stellmer S, Schumm T, Düllmann C E, Pálffy A and Thirolf P 2019 Nature 573 243 [29] Sikorsky T, Geist T, Hengstler D, Kempf S, Gastaldo L, Enss C, Mokry C, Runke J and Düllmann C E 2020 Phys. Rev. Lett. 125 142503 [30] Zhang C, Ooi T, Jacob S, Kempf S, Gastaldo L, Enss C, Mokry C, Runke J and Düllmann C E 2024 Nature 633 63 [31] Higgins J S, Ooi T, Doyle J F, Zhang C, and Ye J, Beeks K, Sikorsky T and Schumm T 2025 Phys. Rev. Lett. 134 113801 [32] Jackson R A, Amaral J B, Valerio M E G, DeMille P and Hudson E R 2009 J. Phys.: Condens. Matter 21 325403 [33] Rellergert W G, DeMille D, Greco R, Hehlen M P, Torgerson J R and Hudson E R 2010 Phys. Rev. Lett. 104 200802 [34] Jeet J 2018 Search for the low lying transition in the 229Th nucleus (Ph.D. Dissertation) (Los Angeles: University of California, Los Angeles) [35] Gouder T, Eloirdi R, Martin R L, Osipenko M, GiovanniniMand Caciuffo R 2019 Phys. Rev. Research 1 033005 [36] Osipenko M, Carrapico C, Burdeinyi D, Caciuffo R, Eloirdi R, Giovannini M, Kellerbauer A, Malmbeck R, Ripani M and Taiuti M 2024 Nucl. Instrum. Meth. A 1068 169744 [37] He L X 2023 Physics 52 476 (in Chinese) [38] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys 118 8207 [39] Heyd, J and Scuseria G E 2004 J. Chem. Phys 121 1187 [40] Adamo C and Barone V 1999 J. Chem. Phys 110 6158 [41] Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys 105 9982 [42] Nickerson B S, Liao W T and Pálffy A 2018 Phys. Rev. A 98 062520 [43] Pimon M, Gugler J, Mohn P, Kazakov G, Mauser N and Schumm T 2020 J. Phys.: Condens. Matter 32 255503 [44] Pimon M, Mohn P and Schumm T 2022 Adv. Theor. Simul 5 2200185 [45] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C 2019 Metrologia 56 065004 [46] Guan M, Bartokos M, Beeks K, Fujimoto H, Fukunaga Y, Haba H, Hiraki T, Kasamatsu Y, Kitao S, Leitner A, Masuda T, Nagasawa N, Okai K, Ogake R, Pimon M, Pressler M, Sasao N, Schaden F, Schumm T, Seto M, Shigekawa Y, Shimizu K, Sikorsky T, Tamasaku K, Takatori S, Watanabe T, Yamaguchi A, Yoda Y, Yoshimi A and Yoshimura K 2026 Phys. Rev. Lett. 136 013203 [47] Dicke R H 1953 Phys. Rev. 89 472 [48] Berengut J C, Dzuba V A, Flambaum V V and Porsev S G 2009 Phys. Rev. Lett. 102 210801 [49] Rohde M and Salomon D 1983 Hyperfine Interactions 15 257 [50] Von Der Wense L and Zhang C 2020 Eur. Phys. J. D 74 146 [51] Ramakrishna J 1966 Philos. Mag. 13 515 [52] Roesch L P, Kulessa R and Horber F 1975 Phys. Status Solidi B 71 389 [53] Ooi T, Doyle J F, Zhang C, Higgins J S, Ye J, Beeks K, Sikorsky T and Schumm T 2025 arXiv:2507.01180 [54] Perera U C, Morgan H W T, Hudson E R and Derevianko A 2025 arXiv:2503.20984 [55] Morgan H W T, Terhune JE S, Elwell R, Bao Tran Tan H, Perera U C, Derevianko A, Hudson E R and Alexandrova A N 2025 arXiv:2503.11374 [56] Tkalya E V 2000 Jetp Lett. 71 311 [57] Nienhuis G and Alkemade C T J 1976 Physica B+C 81 181 [58] Rikken G and Kessener Y 1995 Phys. Rev. Lett. 74 880 [59] Hiraki T, Okai K, Bartokos M, Beeks K, Fujimoto H, Fukunaga Y, Haba H, Kasamatsu Y, Kitao S, Leitner A, Masuda T, Guan M, Nagasawa N, Ogake R, Pimon M, Pressler M, Sasao M, Schaden F, Schumm T, Seto M, Shigekawa Y, Shimizu K, Sikorsky T, Tamasaku K, Takatori S, Watanabe T, Yamaguchi A, Yoda Y, Yoshimi A and Yoshimura K 2024 Nat. Commun. 15 5536 [60] Terhune J E S, Elwell R, Tran Tan H B, Perera U C, Morgan H W T, Alexandrova A N, Derevianko A and Hudson E R 2024 arXiv: 2412.08998 [61] Schaden F, Riebner T, Morawetz I, De Col L T, Kazakov G A, Beeks K, Sikorsky T, Schumm T, V Lal K Z, Zitzer G, Tiedau J, Okhapkin M V and Peik E 2025 Phys. Rev. Res. 7 L022036 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|