Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027703    DOI: 10.1088/1674-1056/adefd8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved energy storage performance by doping linear dielectrics into lead-free NaNbO3-based ceramics

Yunfeng Guo(郭云凤), Junxian Wang(王俊贤), Xiangkai Zhu(朱香开), Yuxuan Ren(任宇轩), Liming Chen(陈立明), and Jiamao Li(李家茂)†
Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
Abstract  NaNbO$_{3}$-based lead-free dielectric ceramics possess significant application prospects in the field of dielectric capacitors. However, their development is hindered by low recoverable energy storage density ($W_{\rm rec}$) and energy storage efficiency ($\eta $). Herein, novel NaNbO$_{3}$-based ceramics, ($1-x$) [0.7Na$_{0.97}$Sm$_{0.01}$NbO$_{3}$-0.3(Sr$_{0.7}$Bi$_{0.2}$)(Ti$_{0.8}$Zr$_{0.2}$)O$_{3}$]-$x$CaTiO$_{3}$, were created by adding CaTiO$_{3}$ linear dielectric, aiming to improve their energy storage performance (ESP). The phase structure, microstructure, dielectric properties, energy storage and charge-discharge performances of the ceramics were methodically analyzed. All components of the ceramics exhibit a perovskite structure consisting of two phases: antiferroelectric $P$-phase (AFE $P$) and antiferroelectric $R$-phase (AFE $R)$, with the AFE $R$ phase increasing as $x$ rises. All ceramic surfaces exhibit clear grain morphology. The resultant ceramics have an appropriate dielectric constant and a small dielectric loss, which are beneficial for improving breakdown field strength ($E_{\rm b}$). Finally, at an $E_{\rm b}$ of 470 kV/cm, 0.85[0.7Na$_{0.97}$Sm$_{0.01}$NbO$_{3}$-0.3(Sr$_{0.7}$Bi$_{0.2}$)(Ti$_{0.8}$Zr$_{0.2}$)O$_{3}$]- 0.15CaTiO$_3$ ceramic achieves optimal ESP: $W_{\rm rec} = 3.9 $ J/cm$^{3}$, $\eta = 72.49$%. In addition, it has remarkable stability with temperature and frequency in energy storage and displays ultrafast speed in the charge-discharge process ($t_{0.9} = 27$ ns).
Keywords:  NaNbO$_{3}$      linear dielectric      energy storage performance      charge-discharge rate  
Received:  24 April 2025      Revised:  15 June 2025      Accepted manuscript online:  15 July 2025
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  77.22.-d (Dielectric properties of solids and liquids)  
Corresponding Authors:  Jiamao Li     E-mail:  lijiamao@ahut.edu.cn

Cite this article: 

Yunfeng Guo(郭云凤), Junxian Wang(王俊贤), Xiangkai Zhu(朱香开), Yuxuan Ren(任宇轩), Liming Chen(陈立明), and Jiamao Li(李家茂) Improved energy storage performance by doping linear dielectrics into lead-free NaNbO3-based ceramics 2026 Chin. Phys. B 35 027703

[1] Yao J K and Zhong W S 2023 Chin. Phys. B 32 018101
[2] Dan Y J, Tang LP, Ning W Z, Meng Y Z, Hu C Z, Liu L J and Fang L 2024 J. Adv. Ceram. 13 1349
[3] Guo Y F, Wang J X, Wang Z X, Li J M and Chen L M 2025 Acta Phys. Sin. 74 017702 (in Chinese)
[4] Zhou L, Zhang X L, Cao Y Y, Zheng F, Gao H, Liu H F and Ma Z 2023 Chin. Phys. B 32 017701
[5] Fan X H, Wang J, Yuan H, Zheng Z H, Zhang J and Zhu K J 2023 J. Adv. Ceram. 12 649
[6] Zhang L, Chen Z G, Luo G G, Aid F R and Luo N N 2023 J. Eur. Ceram. Soc. 43 6077
[7] Bi W J, Li L M, Tian G, Hao J G, Zhai X, Bai H R, Du J, Chen C, Li W and Zheng L M 2023 Chem. Eng. J. 478 147383
[8] Guo Y Q, Jain A, Zhou H Z and Wang Y G 2024 Ceram. Int. 50 50038
[9] Dai S W, Li M Y, Wu X W, Wu Y Y, Li X, Hao Y N and Luo B C 2024 J. Adv. Ceram. 13 877
[10] Guo Y F,Wang J X,Wang Z X, Li J M and Liu C 2024 Acta Chim. Sin. 82 511
[11] Jayakrishnan A R, Silva J P B, Kamakshi K, Dastan D, Annapureddy V, Pereira M and Sekhar K C 2023 Prog. Mater. Sci. 132 101046
[12] Pu Y P,WangW, Guo X, Shi R K, YangMD and Li JW2019 J. Mater. Chem. C 7 14384
[13] Zhang JW,Wang J, Gao D D, Liu H, Xie J Y and HuWB 2021 J. Eur. Ceram. Soc. 41 352
[14] Zhou H Y, Zhu X N, Ren G R and Chen X M 2016 J. Alloys Compd. 688 687
[15] Sarantopoulos A, Ferreiro-Vila E, Pardo V, Magén C, Aguirre MH and Rivadulla F 2015 Phys. Rev. Lett. 115 166801
[16] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[17] Feng Y, Zhen Y H, Jiang X L, Yang Z R, Qin Z, Yang W J, Qie Y Y and Geng H X 2023 Ceram. Int. 49 14135
[18] Kang R R,Wang Z P, YangWJ, Zhu X P, Shi P, Gao Y F, Mao P, Zhao J T, Zhang L X and Lou X J 2021 J. Mater. Chem. A 9 24387
[19] Dong X Y, Li X, Chen H Y, Dong Q P, Wang J M, Wang X, Pan Y, Chen X L and Zhou H F 2022 J. Adv. Ceram. 11 729
[20] Zhou H Y, Liu X Q, Zhu X L and Chen X M 2018 J. Am. Ceram. Soc. 101 1999
[21] Wang W, Pu Y P, Guo X, Shi R K, Shi Y, Yang M D, Li J W, Peng X and Li Y 2019 J. Eur. Ceram. Soc. 39 5236
[22] Nong P, Pan Y, Dong Q P, Zeng D F, Xu M Z, Wang X, Wang J M, Deng L, Chen X L and Zhou H F 2024 Electron. Mater. Lett. 20 65
[23] Zhang Y B, Liu J K, Bai W F, Zheng P, Wu S T, Li P and Zhai J W 2024 Chem. Eng. J. 480 147974
[24] Guo Y F, Wang J X, Ren Y X, Chen L M and Li J M 2024 Ceram. Int. 50 46729
[25] Qu N, Du H L and Hao X H 2019 J. Mater. Chem. C 7 7993
[26] Dong X Y, Li X, Chen X L, Chen H Y, Sun C C, Shi J P, Pang F H and Zhou H F 2021 J. Materiomics 7 629
[27] Liu J K, Ding Y Q, Li C Y, Bai W F, Zheng P, Wu S T, Zhang J J, Pan Z B and Zhai J W. 2023 J. Mater. Chem. A 11 609
[28] Liu S, Feng W W, Li J H, Tang B, Hu C, Zhong Y, He B and Luo D J 2023 Chem. Eng. J. 470 144086
[29] Liu S, Feng W W, Li J H, He B, Liu M T, Bao Z D, Luo D J and Zhao C C 2022 J. Eur. Ceram. Soc. 42 7430
[30] Liang C, Wang C Y, Cao W J, Zhao H Y, Li F and Wang C C 2023 J. Adv. Dielectr. 13 2242004
[31] Wang C M, Zhang H B, Guo X, Xiao J Z, Zhang X D, Zhang S P, Xie B and Tan H 2024 J. Chin. Ceram. Soc. 52 1240 (in Chinese)
[32] Lai D Y, Yao Z H, YouW, Gao B, Guo Q H, Lu P, Ullah A, Hao H, Cao M H and Liu H X 2022 J. Materiomics 8 166
[33] Huan Y, Wei T, Wang X Z, Liu X M, Zhao P Y and Wang X H 2021 Chem. Eng. J. 425 129506
[34] Kang R R,Wang Z P, YangWJ, Zhu X P, Shi P, Gao Y F, Mao P, Zhao J T, Zhang L X and Lou X J 2021 J. Mater. Chem. A 9 24387
[35] Huan Y, Gui D Y, Li C X, Wei T, Wu L Z, Wang X J, Wang X Z and Cheng Z X 2024 J. Adv. Ceram. 13 34
[36] Chen L, Long F X, Qi H, Liu H, Deng S Q and Chen J 2022 Adv. Funct. Mater. 32 2110478
[37] Yao K, Zhou C R, Wang J, Li Q N, Yuan C L, Xu J W, Chen G H and Rao G H 2021 J. Alloys Compd. 883 160855
[38] Fan Y Z, Zhou Z Y, Liang R H and Dong X L 2019 J. Eur. Ceram. Soc. 39 4770
[39] Zhang A Y, Wang T, Liu J X, Chen J H, Chen W and Yang H B 2024 J. Chin. Ceram. Soc. 52 1326 (in Chinese)
[40] Liu J B, Zheng P, Bai W F and Sheng L S 2024 J. Chin. Ceram. Soc. 52 1345 (in Chinese)
[1] Improved ferroelectricity in Mn-doped HfO2 (111) epitaxial thin films through controlled doping and substrate orientation
Jiayi Gu(顾嘉仪), Haiyi Zhang(张海义), Weijin Pan(潘炜进), Haifeng Bu(卜海峰), Zhijian Shen(沈志健), Shengchun Shen(沈胜春), Yuewei Yin(殷月伟), and Xiaoguang Li(李晓光). Chin. Phys. B, 2025, 34(8): 087701.
[2] Enhanced photothermal performance of dielectric silicon attached with multiple plasmonic gold nanoparticles
Xiangyu Tong(佟翔宇), Ning Chen(陈宁), Xiaowen Chen(陈晓文), Bin Zhang(张斌), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2025, 34(8): 087803.
[3] Performance of tubular actuators constructed with dielectric elastomer materials
Chengguang Zhang(张成光). Chin. Phys. B, 2025, 34(7): 074501.
[4] Positive and negative electrocaloric effects
Hongrui Xu(徐洪瑞) and Jiping Huang(黄吉平). Chin. Phys. B, 2025, 34(6): 067702.
[5] Multiferroicity and thermal expansion of the layered metal-organic framework [NH4Cl]2[Ni(HCOO)2(NH3)2]
Dan Cheng(程丹), Yingjie He(何英杰), Shuang Liu(刘爽), Na Su(苏娜), and Young Sun(孙阳). Chin. Phys. B, 2025, 34(6): 067505.
[6] High-performance KNN-based piezoelectric ceramics for buzzer application
Cheng Xiong(熊城), Bosen Li(李博森), Zhongxin Liao(廖忠新), Yan Qiu(邱䶮), and Daqiang Gao(高大强). Chin. Phys. B, 2025, 34(4): 047701.
[7] Influence of cooling atmosphere on the structure, magnetization, and dielectric properties of CaBaCo4O7
Gaoshang Gong(龚高尚), Minghao Wang(王明豪), Ruoshui Liu(刘若水), Yang Wu(吴杨), Lichen Wang(王利晨), Yongqiang Wang(王永强), and Baogen Shen(沈保根). Chin. Phys. B, 2025, 34(4): 047502.
[8] Optimization of Skanavi model and its application to high permittivity materials
Hao Luo(罗昊), Xinrui Qin(秦新瑞), Kejia Geng(耿可佳), Cuncun Kong(孔存存), and Pengfei Cheng(成鹏飞). Chin. Phys. B, 2025, 34(1): 017702.
[9] Nonvolatile ferroelectric control of electronic properties of Bi2Te3
Xusheng Ding(丁旭升), Yunfei Li(李云飞), Chaoyang Kang(康朝阳), Ye-Heng Song(宋业恒), and Weifeng Zhang(张伟风). Chin. Phys. B, 2024, 33(11): 117301.
[10] Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM
Wanbo Qu(曲万博), Zhihao Zhao(赵志昊), Yuxuan Yang(杨宇轩), Yang Zhang(张杨), Shengwu Guo(郭生武), Fei Li(李飞), Xiangdong Ding(丁向东), Jun Sun(孙军), and Haijun Wu(武海军). Chin. Phys. B, 2024, 33(11): 116802.
[11] Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成). Chin. Phys. B, 2024, 33(8): 087701.
[12] Piezoelectric fibers based on silk fibroin with excellent output performance
Wenqiang Zhen(甄文强), Jie Chen(陈杰), Suna Fan(范苏娜), and Yaopeng Zhang(张耀鹏). Chin. Phys. B, 2024, 33(8): 088701.
[13] Structure, ferroelectric, and enhanced fatigue properties of sol-gel-processed new Bi-based perovskite thin films of Bi(Cu1/2Ti1/2)O3-PbTiO3
Wei-Bin Song(宋伟宾), Guo-Qiang Xi(席国强), Zhao Pan(潘昭), Jin Liu(刘锦), Xu-Bin Ye(叶旭斌), Zhe-Hong Liu(刘哲宏), Xiao Wang(王潇), Peng-Fei Shan(单鹏飞), Lin-Xing Zhang(张林兴), Nian-Peng Lu(鲁年鹏), Long-Long Fan(樊龙龙), Xiao-Mei Qin(秦晓梅), and You-Wen Long(龙有文). Chin. Phys. B, 2024, 33(5): 057701.
[14] Tensile stress regulated microstructures and ferroelectric properties of Hf0.5Zr0.5O2 films
Siying Huo(霍思颖), Junfeng Zheng(郑俊锋), Yuanyang Liu(刘远洋), Yushan Li(李育姗),Ruiqiang Tao(陶瑞强), Xubing Lu(陆旭兵), and Junming Liu(刘俊明). Chin. Phys. B, 2023, 32(12): 127701.
[15] Ferroelectric domain wall memory
Yiming Li(李一鸣), Jie Sun(孙杰), and Anquan Jiang(江安全). Chin. Phys. B, 2023, 32(12): 128504.
No Suggested Reading articles found!