| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved energy storage performance by doping linear dielectrics into lead-free NaNbO3-based ceramics |
| Yunfeng Guo(郭云凤), Junxian Wang(王俊贤), Xiangkai Zhu(朱香开), Yuxuan Ren(任宇轩), Liming Chen(陈立明), and Jiamao Li(李家茂)† |
| Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China |
|
|
|
|
Abstract NaNbO$_{3}$-based lead-free dielectric ceramics possess significant application prospects in the field of dielectric capacitors. However, their development is hindered by low recoverable energy storage density ($W_{\rm rec}$) and energy storage efficiency ($\eta $). Herein, novel NaNbO$_{3}$-based ceramics, ($1-x$) [0.7Na$_{0.97}$Sm$_{0.01}$NbO$_{3}$-0.3(Sr$_{0.7}$Bi$_{0.2}$)(Ti$_{0.8}$Zr$_{0.2}$)O$_{3}$]-$x$CaTiO$_{3}$, were created by adding CaTiO$_{3}$ linear dielectric, aiming to improve their energy storage performance (ESP). The phase structure, microstructure, dielectric properties, energy storage and charge-discharge performances of the ceramics were methodically analyzed. All components of the ceramics exhibit a perovskite structure consisting of two phases: antiferroelectric $P$-phase (AFE $P$) and antiferroelectric $R$-phase (AFE $R)$, with the AFE $R$ phase increasing as $x$ rises. All ceramic surfaces exhibit clear grain morphology. The resultant ceramics have an appropriate dielectric constant and a small dielectric loss, which are beneficial for improving breakdown field strength ($E_{\rm b}$). Finally, at an $E_{\rm b}$ of 470 kV/cm, 0.85[0.7Na$_{0.97}$Sm$_{0.01}$NbO$_{3}$-0.3(Sr$_{0.7}$Bi$_{0.2}$)(Ti$_{0.8}$Zr$_{0.2}$)O$_{3}$]- 0.15CaTiO$_3$ ceramic achieves optimal ESP: $W_{\rm rec} = 3.9 $ J/cm$^{3}$, $\eta = 72.49$%. In addition, it has remarkable stability with temperature and frequency in energy storage and displays ultrafast speed in the charge-discharge process ($t_{0.9} = 27$ ns).
|
Received: 24 April 2025
Revised: 15 June 2025
Accepted manuscript online: 15 July 2025
|
|
PACS:
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
| |
77.22.-d
|
(Dielectric properties of solids and liquids)
|
|
Corresponding Authors:
Jiamao Li
E-mail: lijiamao@ahut.edu.cn
|
Cite this article:
Yunfeng Guo(郭云凤), Junxian Wang(王俊贤), Xiangkai Zhu(朱香开), Yuxuan Ren(任宇轩), Liming Chen(陈立明), and Jiamao Li(李家茂) Improved energy storage performance by doping linear dielectrics into lead-free NaNbO3-based ceramics 2026 Chin. Phys. B 35 027703
|
[1] Yao J K and Zhong W S 2023 Chin. Phys. B 32 018101 [2] Dan Y J, Tang LP, Ning W Z, Meng Y Z, Hu C Z, Liu L J and Fang L 2024 J. Adv. Ceram. 13 1349 [3] Guo Y F, Wang J X, Wang Z X, Li J M and Chen L M 2025 Acta Phys. Sin. 74 017702 (in Chinese) [4] Zhou L, Zhang X L, Cao Y Y, Zheng F, Gao H, Liu H F and Ma Z 2023 Chin. Phys. B 32 017701 [5] Fan X H, Wang J, Yuan H, Zheng Z H, Zhang J and Zhu K J 2023 J. Adv. Ceram. 12 649 [6] Zhang L, Chen Z G, Luo G G, Aid F R and Luo N N 2023 J. Eur. Ceram. Soc. 43 6077 [7] Bi W J, Li L M, Tian G, Hao J G, Zhai X, Bai H R, Du J, Chen C, Li W and Zheng L M 2023 Chem. Eng. J. 478 147383 [8] Guo Y Q, Jain A, Zhou H Z and Wang Y G 2024 Ceram. Int. 50 50038 [9] Dai S W, Li M Y, Wu X W, Wu Y Y, Li X, Hao Y N and Luo B C 2024 J. Adv. Ceram. 13 877 [10] Guo Y F,Wang J X,Wang Z X, Li J M and Liu C 2024 Acta Chim. Sin. 82 511 [11] Jayakrishnan A R, Silva J P B, Kamakshi K, Dastan D, Annapureddy V, Pereira M and Sekhar K C 2023 Prog. Mater. Sci. 132 101046 [12] Pu Y P,WangW, Guo X, Shi R K, YangMD and Li JW2019 J. Mater. Chem. C 7 14384 [13] Zhang JW,Wang J, Gao D D, Liu H, Xie J Y and HuWB 2021 J. Eur. Ceram. Soc. 41 352 [14] Zhou H Y, Zhu X N, Ren G R and Chen X M 2016 J. Alloys Compd. 688 687 [15] Sarantopoulos A, Ferreiro-Vila E, Pardo V, Magén C, Aguirre MH and Rivadulla F 2015 Phys. Rev. Lett. 115 166801 [16] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243 [17] Feng Y, Zhen Y H, Jiang X L, Yang Z R, Qin Z, Yang W J, Qie Y Y and Geng H X 2023 Ceram. Int. 49 14135 [18] Kang R R,Wang Z P, YangWJ, Zhu X P, Shi P, Gao Y F, Mao P, Zhao J T, Zhang L X and Lou X J 2021 J. Mater. Chem. A 9 24387 [19] Dong X Y, Li X, Chen H Y, Dong Q P, Wang J M, Wang X, Pan Y, Chen X L and Zhou H F 2022 J. Adv. Ceram. 11 729 [20] Zhou H Y, Liu X Q, Zhu X L and Chen X M 2018 J. Am. Ceram. Soc. 101 1999 [21] Wang W, Pu Y P, Guo X, Shi R K, Shi Y, Yang M D, Li J W, Peng X and Li Y 2019 J. Eur. Ceram. Soc. 39 5236 [22] Nong P, Pan Y, Dong Q P, Zeng D F, Xu M Z, Wang X, Wang J M, Deng L, Chen X L and Zhou H F 2024 Electron. Mater. Lett. 20 65 [23] Zhang Y B, Liu J K, Bai W F, Zheng P, Wu S T, Li P and Zhai J W 2024 Chem. Eng. J. 480 147974 [24] Guo Y F, Wang J X, Ren Y X, Chen L M and Li J M 2024 Ceram. Int. 50 46729 [25] Qu N, Du H L and Hao X H 2019 J. Mater. Chem. C 7 7993 [26] Dong X Y, Li X, Chen X L, Chen H Y, Sun C C, Shi J P, Pang F H and Zhou H F 2021 J. Materiomics 7 629 [27] Liu J K, Ding Y Q, Li C Y, Bai W F, Zheng P, Wu S T, Zhang J J, Pan Z B and Zhai J W. 2023 J. Mater. Chem. A 11 609 [28] Liu S, Feng W W, Li J H, Tang B, Hu C, Zhong Y, He B and Luo D J 2023 Chem. Eng. J. 470 144086 [29] Liu S, Feng W W, Li J H, He B, Liu M T, Bao Z D, Luo D J and Zhao C C 2022 J. Eur. Ceram. Soc. 42 7430 [30] Liang C, Wang C Y, Cao W J, Zhao H Y, Li F and Wang C C 2023 J. Adv. Dielectr. 13 2242004 [31] Wang C M, Zhang H B, Guo X, Xiao J Z, Zhang X D, Zhang S P, Xie B and Tan H 2024 J. Chin. Ceram. Soc. 52 1240 (in Chinese) [32] Lai D Y, Yao Z H, YouW, Gao B, Guo Q H, Lu P, Ullah A, Hao H, Cao M H and Liu H X 2022 J. Materiomics 8 166 [33] Huan Y, Wei T, Wang X Z, Liu X M, Zhao P Y and Wang X H 2021 Chem. Eng. J. 425 129506 [34] Kang R R,Wang Z P, YangWJ, Zhu X P, Shi P, Gao Y F, Mao P, Zhao J T, Zhang L X and Lou X J 2021 J. Mater. Chem. A 9 24387 [35] Huan Y, Gui D Y, Li C X, Wei T, Wu L Z, Wang X J, Wang X Z and Cheng Z X 2024 J. Adv. Ceram. 13 34 [36] Chen L, Long F X, Qi H, Liu H, Deng S Q and Chen J 2022 Adv. Funct. Mater. 32 2110478 [37] Yao K, Zhou C R, Wang J, Li Q N, Yuan C L, Xu J W, Chen G H and Rao G H 2021 J. Alloys Compd. 883 160855 [38] Fan Y Z, Zhou Z Y, Liang R H and Dong X L 2019 J. Eur. Ceram. Soc. 39 4770 [39] Zhang A Y, Wang T, Liu J X, Chen J H, Chen W and Yang H B 2024 J. Chin. Ceram. Soc. 52 1326 (in Chinese) [40] Liu J B, Zheng P, Bai W F and Sheng L S 2024 J. Chin. Ceram. Soc. 52 1345 (in Chinese) |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|