Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 026301    DOI: 10.1088/1674-1056/adf5a5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Light-induced modulation of electrical, optical, and thermodynamic properties via nonlinear phononics in perovskite KTaO3

Qi Yang(杨淇)and Hong Zhang(张红)1,2,†
1 College of Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  Strong long-wavelength laser pulses enable direct manipulation of atomic lattices for engineering novel quantum states in complex materials. Nonlinear coupling between two infrared-active phonon modes (TO$_1$ and TO$_2$), induced by intense terahertz light fields, significantly enhances the amplitude of the TO$_1$ mode and facilitates ultrafast control of transient structural distortions. This light-induced distortion reduces the lattice thermal conductivity from 8.1 W$\cdot$m$^{-1}\cdot$K$^{-1}$ to 3.0 W$\cdot$m$^{-1}\cdot$K$^{-1}$. The reduction originates from the nonlinear coupling, which enhances anharmonic interactions in the lattice potential energy and substantially shortens the phonon lifetime ($\tau $). This work demonstrates a strategy applicable to other perovskite materials and provides a framework for investigating light-induced electrical, optical, and thermodynamic phase transitions.
Keywords:  ultrafast processes      ultrafast dynamics      first-principles calculation      phonon-phonon interactions  
Received:  23 May 2025      Revised:  18 July 2025      Accepted manuscript online:  30 July 2025
PACS:  63.20.dk (First-principles theory)  
  63.20.kg (Phonon-phonon interactions)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2024YFF0508503)
Corresponding Authors:  Hong Zhang     E-mail:  hongzhang@scu.edu.cn

Cite this article: 

Qi Yang(杨淇) and Hong Zhang(张红) Light-induced modulation of electrical, optical, and thermodynamic properties via nonlinear phononics in perovskite KTaO3 2026 Chin. Phys. B 35 026301

[1] Tkach A, Almeida A, Levin I, Woicik J C and Vilarinho P M 2021 Materials 14 4632
[2] Alexander A, Reticcioli M, Albons L, Redondo J, Corrias M, Píš I, Wang Z, Johánek V,Mysliveček J, Franchini C, Wrana D and SetvinM 2024 ACS Appl. Mater. Interfaces 16 70010
[3] Vikhnin V, Eden S, Aulich M and Kapphan S 2000 Solid State Commun. 113 455
[4] Kim M J, Kovalev S, Udina M, Haenel R, Kim G, Puviani M, Cristiani G, Ilyakov I, de Oliveira T V A G, Ponomaryov A, Deinert J C, Logvenov G, Keimer B, Manske D, Benfatto L and Kaiser S 2024 Sci. Adv. 10 eadi7598
[5] Wang E, Adelinia J D, Chavez-Cervantes M, Matsuyama T, Fechner M, Buzzi M, Meier G and Cavalleri A 2023 Nat. Commun. 14 7233
[6] Katsumi K, Nishida M, Kaiser S, Miyasaka S, Tajima S and Shimano R 2023 Phys. Rev. B 107 214506
[7] Tang R and Zhang H 2025 Opt. Express 33 5900
[8] Pfaff C, Pezeril T, Arras R, Calmels L, Cherruault V, Andrieu S, Dumesnil K, Gorchon J and Hauet T 2025 Phys. Rev. B 111 064405
[9] Kogar A, Zong A, Dolgirev P E, Shen X, Straquadine J, Bie Y-Q,Wang X, Rohwer T, Tung I C, Yang Y, Li R, Yang J, Weathersby S, Park S, Kozina M E, Sie E J,Wen H, Jarillo-Herrero P, Fisher I R,Wang X and Gedik N 2020 Nat. Phys. 16 159
[10] Zhang J, Lian C, Guan M, MaW, Fu H, Guo H and Meng S 2019 Nano Lett. 19 6027
[11] Tang R, Boi F and Cheng Y H 2023 npj Quantum Mater. 8 78
[12] GuanMX,Wang E, You PW, Sun J T and Meng S 2021 Nat. Commun. 12 1885
[13] Shin D, Sato S A, Hübener H, De Giovannini U, Park N and Rubio A 2020 npj Comput. Mater. 6 182
[14] Völkel A, Nimmesgern L, Mielnik-Pyszczorski A, Wirth T and Herink G 2022 Nat. Commun. 13 2066
[15] Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A, Lupi S, Di Pietro P, Pontiroli D, Ricco M, Clark S R, Jaksch D and Cavalleri A 2016 Nature 530 461
[16] Cantaluppi A, Buzzi M, Jotzu G, Nicoletti D, Mitrano M, Pontiroli D, Ricco M, Perucchi A, Di Pietro P and Cavalleri A 2018 Nat. Phys. 14 837
[17] Rowe E, Yuan B, Buzzi M, Jotzu G, Zhu Y, Fechner M, Först M, Liu B, Pontiroli D, Ricco M and Cavalleri A 2023 Nat. Phys. 19 1821
[18] Sie E J, Nyby C M, Pemmaraju C D, Park S J, Shen X, Yang J, HoffmannMC, Ofori-Okai B K, Li R, Reid A H,Weathersby S, Mannebach E, Finney N, Rhodes D, Chenet D, Antony A, Balicas L, Hone J, Devereaux T P, Heinz T F, Wang X and Lindenberg A M 2019 Nature 565 61
[19] Vaswani C, Wang L L, Mudiyanselage D H, Li Q, Lozano P M, Gu G D, Cheng D, Song B, Luo L, Kim R H J, Huang C, Liu Z, Mootz M, Perakis I E, Yao Y, Ho K M and Wang J 2020 Phys. Rev. X 10 021013
[20] McIver JW, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38
[21] Zhu J, Pan Z, Xiong J and Wu X 2025 Phys. Scr. 100 035525
[22] Abalmasov V A 2020 Phys. Rev. B 101 014102
[23] Yang Q and Meng S 2024 Phys. Rev. Lett. 133 136902
[24] Kahana T, Bustamante Lopez D A and Juraschek D M 2024 Sci. Adv. 10 eado0722
[25] Li X, Qiu T, Zhang J, Baldini E, Lu J, Rappe A M and Nelson K A 2019 Science 364 1079
[26] Shin D, Latini S, Schäfer C, Sato S A, Baldini E, De Giovannini U, Hübener H and Rubio A 2022 Phys. Rev. Lett. 129 167401
[27] Subedi A, Cavalleri A and Georges A 2014 Phys. Rev. B 89 220301
[28] Juraschek D M and Maehrlein S F 2018 Phys. Rev. B 97 174302
[29] Först M, Manzoni C, Kaiser S, Tomioka Y, Tokura Y, Merlin R and Cavalleri A 2011 Nat. Phys. 7 854
[30] Först M, Tobey R I, Wall S, Bromberger H, Khanna V, Cavalieri A L, Chuang Y D, Lee W S, Moore R, Schlotter W F, Turner J J, Krupin O, Trigo M, Zheng H, Mitchell J F, Dhesi S S, Hill J P and Cavalleri A 2011 Phys. Rev. B 84 241104
[31] Först M, Mankowsky R, Bromberger H, Fritz D M, Lemke H, Zhu D, Chollet M, Tomioka Y, Tokura Y, Merlin R, Hill J P, Johnson S L and Cavalleri A 2013 Solid State Commun. 169 24
[32] Först M, Mankowsky R and Cavalleri A 2015 Acc. Chem. Res. 48 380
[33] Disa A S, Nova T F and Cavalleri A 2021 Nat. Phys. 17 1087
[34] Wang J, You J L, Wang X P, Wang M, Zhang Q L, Wan S M and Lu L M 2022 J. Mol. Liq. 365 120098
[35] Jawad M, Rahman A U, Mirza S H, Azam S, Amin N U, Amin M A and El-Bahy S M 2024 J. Phys. Chem. Solids 194 112213
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[38] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[42] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[43] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[44] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
[45] Salpeter E E and Bethe H A 1951 Phys. Rev. 84 1232
[46] Togo A 2022 J. Phys. Soc. Jpn. 92 012001
[47] Uwe H and Sakudo T 1977 Phys. Rev. B 15 337
[48] Goulielmakis E and Brabec T 2022 Nat. Photon. 16 411
[49] Chen J, Xia Q and Fu L 2021 Phys. Rev. A 104 063109
[50] Kato H and Kudo A 2001 J. Phys. Chem. B 105 4285
[51] Wu B, Cai J and Zhou X 2022 RSC Adv. 12 32270
[52] Li H Y, Mu Z, Liu Z T, Du Y H and Liu Q J 2022 Physica B 647 414372
[53] Akter H, Hossain M M, Uddin M M, Naqib S H and Ali M A 2024 J. Phys. Chem. Solids 190 112021
[54] Zhu Q, Chen J, Gou G, Chen H and Li P 2017 J. Mater. Process. Technol. 246 267
[55] Hussain S and Rehman J U 2024 Physica B 687 416116
[56] Sarfraz S, Aldaghfag S A, Butt M K, Yaseen M, Zahid M and Dahshan A 2022 Mater. Sci. Semicond. Process. 148 106811
[57] Naher M I and Naqib S H 2022 Results Phys. 37 105505
[58] Himmetoglu B and Janotti A 2016 J. Phys. Condens. Matter 28 065502
[1] First-principles insights into NaMgPO3S oxysulfide solid electrolyte
Jian Sun(孙健), Shaohui Ding(丁少辉), Daquan Yang(杨大全), Kan Zhang(张侃), and Huican Mao(毛慧灿). Chin. Phys. B, 2026, 35(2): 027105.
[2] Three-dimensional flat bands and possible interlayer triplet pairing superconductivity in the alternating twisted NbSe2 moiré bulk
Shuang Liu(刘爽), Peng Chen(陈鹏), and Shihao Zhang(张世豪). Chin. Phys. B, 2026, 35(2): 026801.
[3] Two-dimensional kagome semiconductor Sc6S5X6 (X = Cl, Br, I) with trilayer kagome lattice
Jin-Ling Yan(闫金铃), Xing-Yu Wang(王星雨), Gen-Ping Wu(吴根平), Hao Wang(王浩), Ya-Jiao Ke(柯亚娇), Jiafu Wang(王嘉赋), Zhi-Hong Liu(刘志宏), and Jun-Hui Yuan(袁俊辉). Chin. Phys. B, 2026, 35(2): 027102.
[4] Machine learning-assisted optimization of MTO basis sets
Zhiqiang Li(李志强) and Lei Wang(王蕾). Chin. Phys. B, 2026, 35(1): 016301.
[5] First-principles insights into strain-mediated He migration and irradiation resistance in W-Ta-Cr-V complex alloys
Mengdie Wang(王梦蝶), Chao Zhang(张超), Xinyue Lan(兰新月), Biao Hu(胡标), and Xuebang Wu(吴学邦). Chin. Phys. B, 2026, 35(1): 016102.
[6] Regulation strategies of hot carrier cooling process in perovskite nanocrystals
Zhenyao Tan(谭振耀), Kexin Xu(徐可欣), Yi Chen(陈逸), Can Ren(任璨), and Tingchao He(贺廷超). Chin. Phys. B, 2025, 34(9): 097302.
[7] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[8] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[9] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[10] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[11] Effective strategy of enhancing piezoelectricity in stable CrSiN4Sn semiconductor monolayers by atom-layer-pair effect
Qi-Wen He(贺绮雯), Dan-Yang Zhu(朱丹阳), Jun-Hui Wang(王俊辉), He-Na Zhang(张贺娜), Xiao Shang(尚骁), Shou-Xin Cui(崔守鑫), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2025, 34(5): 057701.
[12] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[13] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[14] Pressure-driven crystal structure evolution in RbB2C4 compounds
Jinyu Liu(刘金禹), Ailing Liu(刘爱玲), Yujia Wang(王雨佳), Lili Gao(高丽丽), Xiangyi Luo(罗香怡), and Miao Zhang(张淼). Chin. Phys. B, 2025, 34(4): 046201.
[15] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
No Suggested Reading articles found!