| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Light-induced modulation of electrical, optical, and thermodynamic properties via nonlinear phononics in perovskite KTaO3 |
| Qi Yang(杨淇)1 and Hong Zhang(张红)1,2,† |
1 College of Physics, Sichuan University, Chengdu 610065, China; 2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China |
|
|
|
|
Abstract Strong long-wavelength laser pulses enable direct manipulation of atomic lattices for engineering novel quantum states in complex materials. Nonlinear coupling between two infrared-active phonon modes (TO$_1$ and TO$_2$), induced by intense terahertz light fields, significantly enhances the amplitude of the TO$_1$ mode and facilitates ultrafast control of transient structural distortions. This light-induced distortion reduces the lattice thermal conductivity from 8.1 W$\cdot$m$^{-1}\cdot$K$^{-1}$ to 3.0 W$\cdot$m$^{-1}\cdot$K$^{-1}$. The reduction originates from the nonlinear coupling, which enhances anharmonic interactions in the lattice potential energy and substantially shortens the phonon lifetime ($\tau $). This work demonstrates a strategy applicable to other perovskite materials and provides a framework for investigating light-induced electrical, optical, and thermodynamic phase transitions.
|
Received: 23 May 2025
Revised: 18 July 2025
Accepted manuscript online: 30 July 2025
|
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
| |
63.20.kg
|
(Phonon-phonon interactions)
|
| |
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
| |
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2024YFF0508503) |
Corresponding Authors:
Hong Zhang
E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Qi Yang(杨淇) and Hong Zhang(张红) Light-induced modulation of electrical, optical, and thermodynamic properties via nonlinear phononics in perovskite KTaO3 2026 Chin. Phys. B 35 026301
|
[1] Tkach A, Almeida A, Levin I, Woicik J C and Vilarinho P M 2021 Materials 14 4632 [2] Alexander A, Reticcioli M, Albons L, Redondo J, Corrias M, Píš I, Wang Z, Johánek V,Mysliveček J, Franchini C, Wrana D and SetvinM 2024 ACS Appl. Mater. Interfaces 16 70010 [3] Vikhnin V, Eden S, Aulich M and Kapphan S 2000 Solid State Commun. 113 455 [4] Kim M J, Kovalev S, Udina M, Haenel R, Kim G, Puviani M, Cristiani G, Ilyakov I, de Oliveira T V A G, Ponomaryov A, Deinert J C, Logvenov G, Keimer B, Manske D, Benfatto L and Kaiser S 2024 Sci. Adv. 10 eadi7598 [5] Wang E, Adelinia J D, Chavez-Cervantes M, Matsuyama T, Fechner M, Buzzi M, Meier G and Cavalleri A 2023 Nat. Commun. 14 7233 [6] Katsumi K, Nishida M, Kaiser S, Miyasaka S, Tajima S and Shimano R 2023 Phys. Rev. B 107 214506 [7] Tang R and Zhang H 2025 Opt. Express 33 5900 [8] Pfaff C, Pezeril T, Arras R, Calmels L, Cherruault V, Andrieu S, Dumesnil K, Gorchon J and Hauet T 2025 Phys. Rev. B 111 064405 [9] Kogar A, Zong A, Dolgirev P E, Shen X, Straquadine J, Bie Y-Q,Wang X, Rohwer T, Tung I C, Yang Y, Li R, Yang J, Weathersby S, Park S, Kozina M E, Sie E J,Wen H, Jarillo-Herrero P, Fisher I R,Wang X and Gedik N 2020 Nat. Phys. 16 159 [10] Zhang J, Lian C, Guan M, MaW, Fu H, Guo H and Meng S 2019 Nano Lett. 19 6027 [11] Tang R, Boi F and Cheng Y H 2023 npj Quantum Mater. 8 78 [12] GuanMX,Wang E, You PW, Sun J T and Meng S 2021 Nat. Commun. 12 1885 [13] Shin D, Sato S A, Hübener H, De Giovannini U, Park N and Rubio A 2020 npj Comput. Mater. 6 182 [14] Völkel A, Nimmesgern L, Mielnik-Pyszczorski A, Wirth T and Herink G 2022 Nat. Commun. 13 2066 [15] Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A, Lupi S, Di Pietro P, Pontiroli D, Ricco M, Clark S R, Jaksch D and Cavalleri A 2016 Nature 530 461 [16] Cantaluppi A, Buzzi M, Jotzu G, Nicoletti D, Mitrano M, Pontiroli D, Ricco M, Perucchi A, Di Pietro P and Cavalleri A 2018 Nat. Phys. 14 837 [17] Rowe E, Yuan B, Buzzi M, Jotzu G, Zhu Y, Fechner M, Först M, Liu B, Pontiroli D, Ricco M and Cavalleri A 2023 Nat. Phys. 19 1821 [18] Sie E J, Nyby C M, Pemmaraju C D, Park S J, Shen X, Yang J, HoffmannMC, Ofori-Okai B K, Li R, Reid A H,Weathersby S, Mannebach E, Finney N, Rhodes D, Chenet D, Antony A, Balicas L, Hone J, Devereaux T P, Heinz T F, Wang X and Lindenberg A M 2019 Nature 565 61 [19] Vaswani C, Wang L L, Mudiyanselage D H, Li Q, Lozano P M, Gu G D, Cheng D, Song B, Luo L, Kim R H J, Huang C, Liu Z, Mootz M, Perakis I E, Yao Y, Ho K M and Wang J 2020 Phys. Rev. X 10 021013 [20] McIver JW, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38 [21] Zhu J, Pan Z, Xiong J and Wu X 2025 Phys. Scr. 100 035525 [22] Abalmasov V A 2020 Phys. Rev. B 101 014102 [23] Yang Q and Meng S 2024 Phys. Rev. Lett. 133 136902 [24] Kahana T, Bustamante Lopez D A and Juraschek D M 2024 Sci. Adv. 10 eado0722 [25] Li X, Qiu T, Zhang J, Baldini E, Lu J, Rappe A M and Nelson K A 2019 Science 364 1079 [26] Shin D, Latini S, Schäfer C, Sato S A, Baldini E, De Giovannini U, Hübener H and Rubio A 2022 Phys. Rev. Lett. 129 167401 [27] Subedi A, Cavalleri A and Georges A 2014 Phys. Rev. B 89 220301 [28] Juraschek D M and Maehrlein S F 2018 Phys. Rev. B 97 174302 [29] Först M, Manzoni C, Kaiser S, Tomioka Y, Tokura Y, Merlin R and Cavalleri A 2011 Nat. Phys. 7 854 [30] Först M, Tobey R I, Wall S, Bromberger H, Khanna V, Cavalieri A L, Chuang Y D, Lee W S, Moore R, Schlotter W F, Turner J J, Krupin O, Trigo M, Zheng H, Mitchell J F, Dhesi S S, Hill J P and Cavalleri A 2011 Phys. Rev. B 84 241104 [31] Först M, Mankowsky R, Bromberger H, Fritz D M, Lemke H, Zhu D, Chollet M, Tomioka Y, Tokura Y, Merlin R, Hill J P, Johnson S L and Cavalleri A 2013 Solid State Commun. 169 24 [32] Först M, Mankowsky R and Cavalleri A 2015 Acc. Chem. Res. 48 380 [33] Disa A S, Nova T F and Cavalleri A 2021 Nat. Phys. 17 1087 [34] Wang J, You J L, Wang X P, Wang M, Zhang Q L, Wan S M and Lu L M 2022 J. Mol. Liq. 365 120098 [35] Jawad M, Rahman A U, Mirza S H, Azam S, Amin N U, Amin M A and El-Bahy S M 2024 J. Phys. Chem. Solids 194 112213 [36] Blöchl P E 1994 Phys. Rev. B 50 17953 [37] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [38] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [41] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [42] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [43] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [44] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601 [45] Salpeter E E and Bethe H A 1951 Phys. Rev. 84 1232 [46] Togo A 2022 J. Phys. Soc. Jpn. 92 012001 [47] Uwe H and Sakudo T 1977 Phys. Rev. B 15 337 [48] Goulielmakis E and Brabec T 2022 Nat. Photon. 16 411 [49] Chen J, Xia Q and Fu L 2021 Phys. Rev. A 104 063109 [50] Kato H and Kudo A 2001 J. Phys. Chem. B 105 4285 [51] Wu B, Cai J and Zhou X 2022 RSC Adv. 12 32270 [52] Li H Y, Mu Z, Liu Z T, Du Y H and Liu Q J 2022 Physica B 647 414372 [53] Akter H, Hossain M M, Uddin M M, Naqib S H and Ali M A 2024 J. Phys. Chem. Solids 190 112021 [54] Zhu Q, Chen J, Gou G, Chen H and Li P 2017 J. Mater. Process. Technol. 246 267 [55] Hussain S and Rehman J U 2024 Physica B 687 416116 [56] Sarfraz S, Aldaghfag S A, Butt M K, Yaseen M, Zahid M and Dahshan A 2022 Mater. Sci. Semicond. Process. 148 106811 [57] Naher M I and Naqib S H 2022 Results Phys. 37 105505 [58] Himmetoglu B and Janotti A 2016 J. Phys. Condens. Matter 28 065502 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|