| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Controllable phase-dependent optical switch in an atom-cavity system |
| Xu-Yang Li(李旭阳), Yuan-Feng Lu(陆元峰), Ya-Jie Wu(吴亚杰), Ning Li(荔宁), and Miao-Di Guo(郭苗迪)† |
| School of Sciences, Xi'an Technological University, Xi'an 710021, China |
|
|
|
|
Abstract Coherent perfect absorption (CPA) and coherent perfect transmission (CPT) are two extreme states arising from the manipulation of optical fields. Generally, CPA and CPT occur under different input-field phases. Therefore, we propose a scheme to realize an all-optical switch based on phase-dependent CPA-CPT conversion. In our proposal, the CPT state and the CPA state are treated as the on state and the off state, respectively. Consequently, the efficiency of this all-optical switch can reach the maximum value of 1. With the introduction of an incoherent pump field, the CPA state can be achieved under a weaker input probe field or can be converted into a CPT state. The results show that the optical switch can operate with weaker fields and can be further optimized by the application of an incoherent field.
|
Received: 05 June 2025
Revised: 31 July 2025
Accepted manuscript online: 18 August 2025
|
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
| |
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
| |
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
| Fund: This project is supported by the National Natural Science Foundation of China (Grants Nos. 12304405, 12275203, and 12075176), the Natural Science Foundation of Shaanxi Provincial Department of Education (Grant No. 23JK0483), the Natural Science Basic Research Program of Shaanxi (Grant Nos. 2024JC-YBMS-521 and 2024JC-YBMS-039), the 2022 Shaanxi University Youth Innovation Team Project (Grant No. K20220186), and the College Students’ Innovative Entrepreneurial Training Plan Program of Shaanxi (Grant No. S202410702178). |
Cite this article:
Xu-Yang Li(李旭阳), Yuan-Feng Lu(陆元峰), Ya-Jie Wu(吴亚杰), Ning Li(荔宁), and Miao-Di Guo(郭苗迪) Controllable phase-dependent optical switch in an atom-cavity system 2026 Chin. Phys. B 35 024205
|
[1] Dawes A M, Illing L, Clark S M and Gauthier D J 2005 Science 308 672 [2] Scheuer J, Sukhorukov A A and Kivshar Y S 2010 Opt. Lett. 35 3712 [3] Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V and Lukin M D 2009 Phys. Rev. Lett. 102 203902 [4] Kuno Y, Sakane S, Kasamatsu K, Ichinose I and Matsui T 2016 Phys. Rev. A 94 063641 [5] Crenshaw M, Scalora M and Bowden C M 1992 Phys. Rev. Lett. 68 911 [6] Scalora M and Bowden C M 1995 Phys. Rev. A 51 4048 [7] Zhang X, Yi H, Yao Y, Wang S and Shi L 2023 Chin. Phys. Lett. 40 124204 [8] Huang Y P, Altepeter J B and Kumar P 2010 Phys. Rev. A 82 063826 [9] Rutckaia V and Schilling J 2020 Nat. Photonics 14 4 [10] Wang L and Zhu Y 2022 Opt. Lett. 47 830 [11] Li N, Xu J, Song G, Zhu C, Xie S, Yang Y, Zubairy M S and Zhu S Y 2016 Phys. Rev. A 93 043819 [12] Chen F, Li H, Zhou H, Luo S, Sun Z, Ye Z, Sun F, Wang J, Zheng Y and Chen X 2022 Phys. Rev. Lett. 129 057402 [13] Feng J, Wang J, Fieramosca A, Bao R, Zhao J, Su R, Peng Y, Liew T C, Sanvitto D and Xiong Q 2021 Sci. Adv. 7 eabj6627 [14] Wang S, Zhang X, Ma G and Zhu D 2023 Chin. Phys. B 32 030506 [15] Chong Y D, Ge L, Cao H and Stone A D 2010 Phys. Rev. Lett. 105 053901 [16] Wan W, Chong Y, Ge L, Noh H, Stone A D and Cao H 2011 Science 331 889 [17] Longhi S 2010 Phys. Rev. A 82 031801 [18] Novitsky D V 2019 J. Opt. 21 085101 [19] Papaioannou M, Plum E, Valente J, Rogers E T and Zheludev N I 2016 APL Photonics 1 090801 [20] Kang M, Zhang H, Zhang X, Yang Q, Zhang W and Han J 2018 Phys. Rev. Appl. 9 054018 [21] Kakenov N, Balci O, Takan T, Ozkan V A, Altan H and Kocabas C 2016 ACS Photonics 3 1531 [22] Jeffers J 2019 Phys. Rev. Lett. 123 143602 [23] Suwunnarat S, Halpern D, Li H, Shapiro B and Kottos T 2019 Phys. Rev. A 99 013834 [24] Del Hougne P, Yeo K B, Besnier P and Davy M 2021 Laser Photon. Rev. 15 2000471 [25] Liu J C, Wang F L, Han J Y, Hao Y Z, Yang Y D, Xiao J L and Huang Y Z 2020 J. Lightwave Technol. 38 1382 [26] Guo M D, Li H F, Wang F L, Zhou C X and Wu Y J 2023 Opt. Lett. 48 4037 [27] Wong Z J, Xu Y L, Kim J, O’Brien K, Wang Y, Feng L and Zhang X 2016 Nat. Photonics 10 796 [28] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379 [29] Wei Y H, Gu W J, Yang G, Zhu Y and Li G X 2018 Phys. Rev. A 97 053825 [30] Suleymanzade A, Anferov A, Stone M, Naik R K, Oriani A, Simon J and Schuster D 2020 Appl. Phys. Lett. 116 104001 [31] Dong B, Wan Y, Chow W W, Shang C, Prokoshin A, Alkhazraji E, Koscica R, Wang H and Bowers J E 2024 Nat. Photonics 18 669 [32] Zetie K, Adams S and Tocknell R 2000 Phys. Educ. 35 46 [33] Manzano D 2020 AIP Adv. 10 025106 [34] Xiong W, Chen J, Fang B, Lam C H and You J 2020 Phys. Rev. A 101 063822 [35] Agarwal G, Di K, Wang L and Zhu Y 2016 Phys. Rev. A 93 063805 [36] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [37] Guo M D 2021 Opt. Express 29 27653 [38] Guo M D, Wu Y J, Li N, Li H F and Zhou C X 2024 Phys. Lett. A 505 129456 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|