Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024205    DOI: 10.1088/1674-1056/adfc40
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controllable phase-dependent optical switch in an atom-cavity system

Xu-Yang Li(李旭阳), Yuan-Feng Lu(陆元峰), Ya-Jie Wu(吴亚杰), Ning Li(荔宁), and Miao-Di Guo(郭苗迪)
School of Sciences, Xi'an Technological University, Xi'an 710021, China
Abstract  Coherent perfect absorption (CPA) and coherent perfect transmission (CPT) are two extreme states arising from the manipulation of optical fields. Generally, CPA and CPT occur under different input-field phases. Therefore, we propose a scheme to realize an all-optical switch based on phase-dependent CPA-CPT conversion. In our proposal, the CPT state and the CPA state are treated as the on state and the off state, respectively. Consequently, the efficiency of this all-optical switch can reach the maximum value of 1. With the introduction of an incoherent pump field, the CPA state can be achieved under a weaker input probe field or can be converted into a CPT state. The results show that the optical switch can operate with weaker fields and can be further optimized by the application of an incoherent field.
Keywords:  coherent perfect absorption      cavity-QED      optical switching  
Received:  05 June 2025      Revised:  31 July 2025      Accepted manuscript online:  18 August 2025
PACS:  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
Fund: This project is supported by the National Natural Science Foundation of China (Grants Nos. 12304405, 12275203, and 12075176), the Natural Science Foundation of Shaanxi Provincial Department of Education (Grant No. 23JK0483), the Natural Science Basic Research Program of Shaanxi (Grant Nos. 2024JC-YBMS-521 and 2024JC-YBMS-039), the 2022 Shaanxi University Youth Innovation Team Project (Grant No. K20220186), and the College Students’ Innovative Entrepreneurial Training Plan Program of Shaanxi (Grant No. S202410702178).

Cite this article: 

Xu-Yang Li(李旭阳), Yuan-Feng Lu(陆元峰), Ya-Jie Wu(吴亚杰), Ning Li(荔宁), and Miao-Di Guo(郭苗迪) Controllable phase-dependent optical switch in an atom-cavity system 2026 Chin. Phys. B 35 024205

[1] Dawes A M, Illing L, Clark S M and Gauthier D J 2005 Science 308 672
[2] Scheuer J, Sukhorukov A A and Kivshar Y S 2010 Opt. Lett. 35 3712
[3] Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V and Lukin M D 2009 Phys. Rev. Lett. 102 203902
[4] Kuno Y, Sakane S, Kasamatsu K, Ichinose I and Matsui T 2016 Phys. Rev. A 94 063641
[5] Crenshaw M, Scalora M and Bowden C M 1992 Phys. Rev. Lett. 68 911
[6] Scalora M and Bowden C M 1995 Phys. Rev. A 51 4048
[7] Zhang X, Yi H, Yao Y, Wang S and Shi L 2023 Chin. Phys. Lett. 40 124204
[8] Huang Y P, Altepeter J B and Kumar P 2010 Phys. Rev. A 82 063826
[9] Rutckaia V and Schilling J 2020 Nat. Photonics 14 4
[10] Wang L and Zhu Y 2022 Opt. Lett. 47 830
[11] Li N, Xu J, Song G, Zhu C, Xie S, Yang Y, Zubairy M S and Zhu S Y 2016 Phys. Rev. A 93 043819
[12] Chen F, Li H, Zhou H, Luo S, Sun Z, Ye Z, Sun F, Wang J, Zheng Y and Chen X 2022 Phys. Rev. Lett. 129 057402
[13] Feng J, Wang J, Fieramosca A, Bao R, Zhao J, Su R, Peng Y, Liew T C, Sanvitto D and Xiong Q 2021 Sci. Adv. 7 eabj6627
[14] Wang S, Zhang X, Ma G and Zhu D 2023 Chin. Phys. B 32 030506
[15] Chong Y D, Ge L, Cao H and Stone A D 2010 Phys. Rev. Lett. 105 053901
[16] Wan W, Chong Y, Ge L, Noh H, Stone A D and Cao H 2011 Science 331 889
[17] Longhi S 2010 Phys. Rev. A 82 031801
[18] Novitsky D V 2019 J. Opt. 21 085101
[19] Papaioannou M, Plum E, Valente J, Rogers E T and Zheludev N I 2016 APL Photonics 1 090801
[20] Kang M, Zhang H, Zhang X, Yang Q, Zhang W and Han J 2018 Phys. Rev. Appl. 9 054018
[21] Kakenov N, Balci O, Takan T, Ozkan V A, Altan H and Kocabas C 2016 ACS Photonics 3 1531
[22] Jeffers J 2019 Phys. Rev. Lett. 123 143602
[23] Suwunnarat S, Halpern D, Li H, Shapiro B and Kottos T 2019 Phys. Rev. A 99 013834
[24] Del Hougne P, Yeo K B, Besnier P and Davy M 2021 Laser Photon. Rev. 15 2000471
[25] Liu J C, Wang F L, Han J Y, Hao Y Z, Yang Y D, Xiao J L and Huang Y Z 2020 J. Lightwave Technol. 38 1382
[26] Guo M D, Li H F, Wang F L, Zhou C X and Wu Y J 2023 Opt. Lett. 48 4037
[27] Wong Z J, Xu Y L, Kim J, O’Brien K, Wang Y, Feng L and Zhang X 2016 Nat. Photonics 10 796
[28] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[29] Wei Y H, Gu W J, Yang G, Zhu Y and Li G X 2018 Phys. Rev. A 97 053825
[30] Suleymanzade A, Anferov A, Stone M, Naik R K, Oriani A, Simon J and Schuster D 2020 Appl. Phys. Lett. 116 104001
[31] Dong B, Wan Y, Chow W W, Shang C, Prokoshin A, Alkhazraji E, Koscica R, Wang H and Bowers J E 2024 Nat. Photonics 18 669
[32] Zetie K, Adams S and Tocknell R 2000 Phys. Educ. 35 46
[33] Manzano D 2020 AIP Adv. 10 025106
[34] Xiong W, Chen J, Fang B, Lam C H and You J 2020 Phys. Rev. A 101 063822
[35] Agarwal G, Di K, Wang L and Zhu Y 2016 Phys. Rev. A 93 063805
[36] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[37] Guo M D 2021 Opt. Express 29 27653
[38] Guo M D, Wu Y J, Li N, Li H F and Zhou C X 2024 Phys. Lett. A 505 129456
[1] Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers
Zongxia Guo(郭宗夏), Gregory Malinowski, Pierre Vallobra, Yi Peng(彭懿), Yong Xu(许涌), Stéphane Mangin, Weisheng Zhao(赵巍胜), Michel Hehn, and Boyu Zhang(张博宇). Chin. Phys. B, 2023, 32(8): 087507.
[2] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
[3] Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(11): 114205.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Optical switching based on the manipulation of microparticles in a colloidal liquid using strong scattering force
Liu Jin(刘进), Liu Zheng-Qi(刘正奇), Feng Tian-Hua(冯天华), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Lan Sheng(兰胜). Chin. Phys. B, 2010, 19(12): 124209.
[6] Response of colloidal liquids containing magnetic holes of different volume densities to magnetic field characterized by transmission measurement
Deng Hai-Dong(邓海东), Sun Ting(孙婷), Zhao Wei-Ren(赵韦人), Fu Zhi-Cheng(符志成), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Lan Sheng(兰胜), and Achanta Venu Gopal. Chin. Phys. B, 2010, 19(10): 107503.
[7] The remote implementation of all possible generalized quantum measurement on single atomic qubit in a quantum network
Han Yang(韩阳), Wu Chun-Wang(吴春旺), Wu Wei(吴伟), Chen Ping-Xing(陈平形), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2009, 18(8): 3215-3220.
[8] All-optical switchings of 3-hydroxyflavone in different solvents
Wu Feng(吴峰), Lin Lie(林列), Li Xiang-Ping(李向平), Yu Ya-Xin(于雅鑫), Zhang Gui-Lan(张桂兰), and Chen Wen-Ju(陈文驹) . Chin. Phys. B, 2008, 17(4): 1461-1466.
[9] All-optical switching and nonlinear optical properties of HBT in ethanol solution
Zheng Jia-Jin(郑加金), Zhang Gui-Lan(张桂兰), Guo Yang-Xue(郭阳雪), Li Xiang-Ping (李向平), and Chen Wen-Ju(陈文驹). Chin. Phys. B, 2007, 16(4): 1047-1051.
[10] An all-optical switch of Mach-Zehnder interferometer type using an active fibre ring resonator
Li Jun-Qing (李俊庆), Alireza Bananej, Li Qiang-Hua (励强华), Chen Qiang (陈强), Li Chun-Fei (李淳飞). Chin. Phys. B, 2004, 13(7): 1046-1051.
No Suggested Reading articles found!