Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027503    DOI: 10.1088/1674-1056/ae1fea
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Non-Markovian dynamical solver for efficient combinatorial optimization

Haijie Xu(徐海杰)1,2 and Zhe Yuan(袁喆)2,3,†
1 Center for Advanced Quantum Studies and School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China;
2 Interdisciplinary Center for Theoretical Physics and Information Sciences, Fudan University, Shanghai 200433, China;
3 State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
Abstract  We incorporate a non-Markovian feedback mechanism into the simulated bifurcation method for dynamical solvers addressing combinatorial optimization problems. By reinjecting a portion of dissipated kinetic energy into each spin in a history-dependent and trajectory-informed manner, the method effectively suppresses early freezing induced by inelastic boundaries and enhances the system's ability to explore complex energy landscapes. Numerical results on the maximum cut (MAX-CUT) instances of fully connected Sherrington-Kirkpatrick (SK) spin glass models, including the 2000-spin ${K}_{2000}$ benchmark, demonstrate that the non-Markovian algorithm significantly improves both solution quality and convergence speed. Tests on randomly generated SK instances with 100 to 1000 spins further indicate favorable scalability and substantial gains in computational efficiency. Moreover, the proposed scheme is well suited for massively parallel hardware implementations, such as field-programmable gate arrays, providing a practical and scalable approach for solving large-scale combinatorial optimization problems.
Keywords:  non-Markovian dynamics      simulated bifurcation      combinatorial optimization      maximum cut (MAX-CUT) problem      spin glass  
Received:  07 November 2025      Revised:  15 November 2025      Accepted manuscript online:  17 November 2025
PACS:  75.10.Nr (Spin-glass and other random models)  
  02.60.Pn (Numerical optimization)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: This project was supported by the National Key Research and Development Program of China (Grant No. 2024YFA1408500), the National Natural Science Foundation of China (Grant Nos. 12174028 and 12574115), and the Open Fund of the State Key Laboratory of Spintronics Devices and Technologies (Grant No. SPL-2408).
Corresponding Authors:  Zhe Yuan     E-mail:  yuanz@fudan.edu.cn

Cite this article: 

Haijie Xu(徐海杰) and Zhe Yuan(袁喆) Non-Markovian dynamical solver for efficient combinatorial optimization 2026 Chin. Phys. B 35 027503

[1] Mezard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond (Singapore : Singapore World Scientific)
[2] Barahona F, Gröschel M, Jünger M and Reinelt G 1988 Oper. Res. 36 493
[3] Chang K C and Du D H C 1987 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 6 67
[4] Wang J, Jebara T and Chang S F 2013 J. Mach. Learn. Res. 14 771
[5] Collins T 2004 Graph Cut Matching in Computer Vision (Edinburgh: University of Edinburgh)
[6] Lucas A 2014 Front. Phys. 2 5
[7] Hopfield J J 1982 Proc. Natl. Acad. Sci. USA 79 2554
[8] Aarts E H L and Korst J 1989 Simulated Annealing and Boltzmann Machines (Chichester: Wiley)
[9] Bellitti M, Ricci-Tersenghi F and Scardicchio A 2021 Phys. Rev. Res. 3 043015
[10] Monasson R, Zecchina R, Kirkpatrick S, Selman B and Troyansky L 1999 Nature 400 133
[11] Albash T and Lidar D 2018 Rev. Mod. Phys. 90 015002
[12] Santoro G E, Martonak R, Tosatti E and Car R 2002 Science 295 2427
[13] Kirkpatrick S, Gelatt C D and Vecchi M P 1983 Science 220 671
[14] Goto H, Endo K, Suzuki M, Sakai Y, Kanao T, Hamakawa Y, Hidaka R, Yamasaki M and Tatsumura K 2021 Sci. Adv. 7 eabe7953
[15] Honjo T, Sonobe T, Inaba K, Inagaki T, Ikuta T, Yamada Y, Kazama T, Enbutsu K, Umeki T, Kasahara R, Kawarabayashi K and Takesue H 2021 Sci. Adv. 7 eabh0952
[16] Okawachi Y, Yu M, Jang J K, Ji X, Zhao Y, Kim B Y, Lipson M and Gaeta A L 2020 Nat. Commun. 11 4119
[17] Tatsumura K, Dixon A R and Goto H 2019 29th International Conference on Field Programmable Logic and Applications (FPL) 59
[18] Yamaoka M, Yoshimura C, Hayashi M, Okuyama T, Aoki H and Mizuno H 2016 IEEE J. Solid-State Circuits 51 303
[19] Mohseni N, McMahon P L and Byrnes T 2022 Nat. Rev. Phys. 4 363
[20] Inagaki T, Haribara Y, Igarashi K, Sonobe T, Tamate S, Honjo T, Marandi A, McMahon P L, Umeki T, Enbutsu K, Tadanaga O, Takenouchi H, Aihara K, Kawarabayashi K-I, Inoue K, Utsunomiya S and Takesue H 2016 Science 354 603
[21] Goto H 2016 Sci. Rep. 6 21686
[22] Goto H, Tatsumura K and Dixon A R 2019 Sci. Adv. 5 eaav2372
[23] Leleu T, Yamamoto Y, McMahon P L and Aihara K 2019 Phys. Rev. Lett. 122 040607
[24] Wang J, Ebler D, Wong K Y M, Hui D S W and Sun J 2023 Nat. Commun. 14 2510
[25] Kanao T and Goto H 2022 Commun. Phys. 5 212
[26] De Vega I and Alonso D 2017 Rev. Mod. Phys. 89 015001
[27] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[28] Mendonca T M, Celeri L C, Paternostro M and Soares-Pinto D O 2024 Phys. Rev. A 110 L040401
[29] Miao Y, Zhao L, Zhang Y and Yuan Z 2025 Sci. China Phys. Mech. Astron. 68 217511
[30] Zhao L, Zhang M, Zhang Y, Mi Y, Yuan Z and Xia K 2024 Phys. Rev. Appl. 21 064040
[31] Zhang Y, Zheng Q, Zhu X, Yuan Z and Xia K 2020 Sci. China Phys. Mech. Astron. 63 277531
[32] Qiao Y, Zhang Y and Yuan Z 2023 New J. Phys. 25 033031
[33] Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792
[34] Aramon M, Rosenberg G, Valiante E, Miyazawa T, Tamura H and Katzgraber H G 2019 Front. Phys. 7 48
[35] Leimkuhler B and Reich S 2004 Simulating Hamiltonian Dynamics (Cambridge : Cambridge University Press)
[36] Benda J and Herz A V M 2003 Neural Comput. 15 2523
[1] Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz
Xiao-Hui Ni(倪晓慧), Ling-Xiao Li(李凌霄), Yan-Qi Song(宋燕琪), Zheng-Ping Jin(金正平), Su-Juan Qin(秦素娟), and Fei Gao(高飞). Chin. Phys. B, 2025, 34(7): 070304.
[2] K-core attack, equilibrium K-core, and kinetically constrained spin system
Hai-Jun Zhou(周海军). Chin. Phys. B, 2024, 33(6): 066402.
[3] Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers
Hong-Ze Xu(许宏泽), Wei-Feng Zhuang(庄伟峰), Zheng-An Wang(王正安), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yu-Xin Jin(靳羽欣), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(增进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050302.
[4] Crystal growth of CeMn0.85Sb2: Absence of magnetic order of Ce-sublattice
Yong Li(李勇), Shan-Shan Miao(苗杉杉), Hai Feng(冯海),Huai-Xin Yang(杨槐馨), and You-Guo Shi(石友国). Chin. Phys. B, 2023, 32(6): 067501.
[5] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[6] Application of the edge of chaos in combinatorial optimization
Yanqing Tang(唐彦卿), Nayue Zhang(张娜月), Ping Zhu(朱萍), Minghu Fang(方明虎), and Guoguang He(何国光). Chin. Phys. B, 2021, 30(10): 100505.
[7] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[8] Synthesis, structure, and properties of Ba9Co3Se15 with one-dimensional spin chains
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Li-Peng Cao(曹立朋), Wen-Min Li(李文敏), Run-Ze Yu(于润泽), Zheng Deng(邓正), Chang-Qing Jin(靳常青). Chin. Phys. B, 2020, 29(3): 036102.
[9] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[10] Recent progress on magnetic-field studies on quantum-spin-liquid candidates
Zhen Ma(马祯), Kejing Ran(冉柯静), Jinghui Wang(王靖珲), Song Bao(鲍嵩), Zhengwei Cai(蔡正蔚), Shichao Li(李世超), Jinsheng Wen(温锦生). Chin. Phys. B, 2018, 27(10): 106101.
[11] Magnetic phase diagrams of Fe-Mn-Al alloy on the Bethe lattice
Erhan Albayrak. Chin. Phys. B, 2017, 26(2): 020502.
[12] Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4)
Lv Yi-Fei (吕益飞), Xiang Jian-Yong (向建勇), Wen Fu-Sheng (温福昇), Lv Wei-Ming (吕伟明), Hu Wen-Tao (胡文涛), Liu Zhong-Yuan (柳忠元). Chin. Phys. B, 2015, 24(3): 037502.
[13] Observation of spin glass transition in spinel LiCoMnO4
Chen Hong (陈红), Yang Xu (杨旭), Zhang Pei-Song (张培松), Liang Lei (梁磊), Hong Yuan-Ze (洪源泽), Wei Ying-Jin (魏英进), Chen Gang (陈岗), Du Fei (杜菲), Wang Chun-Zhong (王春忠). Chin. Phys. B, 2015, 24(12): 127501.
[14] Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca3CoNb2O9
Dai Jia (代佳), Zhou Ping (周萍), Wang Peng-Shuai (王朋帅), Pang Fei (庞斐), Tim J. Munsie, Graeme M. Luke, Zhang Jin-Shan (张金珊), Yu Wei-Qiang (于伟强). Chin. Phys. B, 2015, 24(12): 127508.
[15] Statistical physics of hard combinatorial optimization:Vertex cover problem
Zhao Jin-Hua (赵金华), Zhou Hai-Jun (周海军). Chin. Phys. B, 2014, 23(7): 078901.
No Suggested Reading articles found!