|
|
|
Phase transition of interfacial water at low-dimensions |
| Wenlong Liang(梁文龙)1, Yujie Huang(黄雨婕)1, Yue Zhang(张悦)1,2, and Chunlei Wang(王春雷)1,† |
1 College of Sciences, Shanghai University, Shanghai 200444, China; 2 School of Machinery and Automation, Weifang University, Weifang 261000, China |
|
|
|
|
Abstract Water molecules can form hydrogen bonds. At the solid surfaces, the preferential alignment of water molecules due to the heterogeneous atomic distributions can induce ordered hydrogen bond networks of water molecules with spatially heterogeneous patterns and slower dynamics compared to bulk water. Both the confinement and the surface atomic structures can induce the water phase transitions at low dimensional spaces. Here, we review how the phase transitions of interfacial water affect the surface physical behaviors, such as wetting, ice nucleation and the terahertz-wave-water interactions, from solid materials to the biological surfaces. These works help extend our knowledge of the physics properties of the interfacial water, particularly the multi-phase behaviors in materials and biology sciences.
|
Received: 22 August 2025
Revised: 10 October 2025
Accepted manuscript online: 14 October 2025
|
|
PACS:
|
05.70.-a
|
(Thermodynamics)
|
| |
64.60.Q-
|
(Nucleation)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 22576126, 12074394, and 12022508). We are also thankful for the computing resources and technical support provided by Shanghai Snowlake Technology Co. Ltd. and the Shanghai Supercomputing Center. |
Corresponding Authors:
Chunlei Wang
E-mail: wangchunlei1982@shu.edu.cn
|
Cite this article:
Wenlong Liang(梁文龙), Yujie Huang(黄雨婕), Yue Zhang(张悦), and Chunlei Wang(王春雷) Phase transition of interfacial water at low-dimensions 2026 Chin. Phys. B 35 020501
|
[1] Ben-Naim A 2011 J. Chem. Phys. 135 085104 [2] Xu L, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F and Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 16558 [3] Shi R and Tanaka H 2020 Proc. Natl. Acad. Sci. USA 117 26591 [4] Koga K, Zeng X C and Tanaka H 1997 Phys. Rev. Lett. 79 5262 [5] Koga K, Tanaka H and Zeng X C 2000 Nature 408 564 [6] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K and Grigorieva I V 2015 Nature 519 443 [7] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188 [8] Bai G, Gao D, Liu Z, Zhou X and Wang J 2019 Nature 576 437 [9] Wang Y H, Zheng S, Yang W M, Zhou R Y, He Q F, Radjenovic P, Dong J C, Li S, Zheng J, Yang Z L, Attard G, Pan F, Tian Z Q and Li J F 2021 Nature 600 81 [10] Litman Y, Chiang K Y, Seki T, Nagata Y and Bonn M 2024 Nat. Chem. 16 644 [11] Ball P 2008 Chemphyschem 9 2677 [12] Ball P 2017 Proc. Natl. Acad. Sci. USA 114 13327 [13] Pal S K and Zewail A H 2004 Chem. Rev. 104 2099 [14] Lv J, Song Y, Jiang L and Wang J 2014 Acs Nano 8 3152 [15] Dolev M B, Braslavsky I and Davies P L 2016 Annu. Rev. Biochem. 85 515 [16] Esfandiar A, Radha B, Wang F C, Yang Q, Hu S, Garaj S, Nair R R, Geim A K and Gopinadhan K 2017 Science 358 511 [17] Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J and Fang H 2017 Nature 550 380 [18] Gröger H, Gallou F and Lipshutz B H 2023 Chem. Rev. 123 5262 [19] Guo Q, Ma Z, Zhou C, Ren Z and Yang X 2019 Chem. Rev. 119 11020 [20] Hu C, Dong Y, Shi Q, Long R and Xiong Y 2025 Chem. Soc. Rev. 54 524 [21] Li H, Fang W, Wang L X, Liu Y, Liu L, Sun T, Liao C, Zhu Y, Wang L and Xiao F S 2023 The Innovation 4 100445 [22] Liu Z, Sinopoli A, Francisco J S and Gladich I 2024 J. Am. Chem. Soc. 146 17898 [23] Wang D, Sheng T, Chen J, Wang H F and Hu P 2018 Nat. Catal. 1 291 [24] Xiong H, Kunwar D, Jiang D, García-Vargas C E, Li H, Du C, Canning G, Pereira-Hernandez X I, Wan Q, Lin S, Purdy S C, Miller J T, Leung K, Chou S S, Brongersma H H, Ter Veen R, Huang J, Guo H, Wang Y and Datye A K 2021 Nat. Catal. 4 830 [25] Bañuelos J L, Borguet E, Brown G E, Jr., Cygan R T, Deyoreo J J, Dove P M, Gaigeot M P, Geiger F M, Gibbs J M, Grassian V H, Ilgen A G, Jun Y S, Kabengi N, Katz L, Kubicki J D, Lützenkirchen J, Putnis C V, Remsing R C, Rosso K M, Rother G, Sulpizi M, Villalobos M and Zhang H 2023 Chem. Rev. 123 6413 [26] Sposito G, Skipper N T, Sutton R, Park S H, Soper A K and Greathouse J A 1999 Proc. Natl. Acad. Sci. USA 96 3358 [27] Hamm L M, Bourg I C, Wallace A F and Rotenberg B 2013 Rev. Mineral Geochem. 77 189 [28] Li J, Ha N S, Liu T L, Van Dam R M and Kim C J 2019 Nature 572 507 [29] Squires T M and Quake S R 2005 Rev. Mod. Phys. 77 977 [30] Lohse D and Zhang X 2015 Rev. Mod. Phys. 87 981 [31] Koga K, Gao G T, Tanaka H and Zeng X C 2001 Nature 412 802 [32] Wan R, Li J, Lu H and Fang H 2005 J. Am. Chem. Soc. 127 7166 [33] Li J Y, Gong X J, Lu H J, Li D, Fang H P and Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687 [34] Fang H, Wan R and Li S 2008 J. Phys. D: App. Phys. 41 103002 [35] Hu J, Xiao X D, Ogletree D F and Salmeron M 1995 Science 268 267 [36] Odelius M, Bernasconi M and Parrinello M 1997 Phys. Rev. Lett. 78 2855 [37] Miranda P B, Xu L, Shen Y R and Salmeron M 1998 Phys. Rev. Lett. 81 5876 [38] Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson L G M and Nilsson A 2002 Phys. Rev. Lett. 89 276102 [39] Feibelman P J 2002 Science 295 99 [40] Meng S, Xu L F, Wang E G and Gao S W 2002 Phys. Rev. Lett. 89 176104 [41] Giovambattista N, Rossky P J and Debenedetti P G 2009 Phys. Rev. Lett. 102 050603 [42] Han S H, Choi M Y, Kumar P and Stanley H E 2010 Nat. Phys. 6 685 [43] Guo J, Meng X, Chen J, Peng J, Sheng J, Li X Z, Xu L, Shi J R, Wang E and Jiang Y 2014 Nat. Mater. 13 184 [44] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G and Jiang Y 2020 Nature 577 60 [45] Wu D, Zhao Z, Lin B, Song Y, Qi J, Jiang J, Yuan Z, Cheng B, Zhao M, Tian Y, Wang Z, Wu M, Bian K, Liu K H, Xu L M, Zeng X C, Wang E G and Jiang Y 2024 Science 384 1254 [46] Wang Z, Yuan Z, Cheng M, Huang X, Liu K, Wang Y, Sun H, Liao L, Xu Z, Chen J,Wang W, Liu L, Bai X, Xu L, Wang E and Wang L 2025 Nat. Commun. 16 7349 [47] Kapil V, Schran C, Zen A, Chen J, Pickard C J and Michaelides A 2022 Nature 609 512 [48] Jiang J, Gao Y, Li L, Liu Y, Zhu W, Zhu C, Francisco J S and Zeng X C 2024 Nat. Phys. 20 456 [49] Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wan R Z, Hu J and Fang H P 2009 Phys. Rev. Lett. 103 137801 [50] Wang C, Qi C, Tu Y, Nie X and Liang S 2019 Phys. Rev. Mater. 3 065602 [51] Guo P, Tu Y S, Yang J R,Wang C L, Sheng N and Fang H P 2015 Phys. Rev. Lett. 115 186101 [52] James M, Darwish T A, Ciampi S, Sylvester S O, Zhang Z, Ng A, Gooding J J and Hanley T L 2011 Soft Matt. 7 5309 [53] Qu M, Huang G, Liu X, Nie X, Qi C, Wang H, Hu J, Fang H, Gao Y, Liu W T, Francisco J S and Wang C 2022 Chem. Sci. 13 10546 [54] Agosta L, Arismendi D, Dzugutov M and Hermansson K 2023 Angew. Chem. Int. Ed. 62 e202303910 [55] Limmer D T, Willard A P, Madden P and Chandler D 2013 Proc. Natl. Acad. Sci. USA 110 4200 [56] Xu Z, Gao Y, Wang C L and Fang H P 2015 J. Phys. Chem. C 119 20409 [57] Argyris D, Ho T, Cole D R and Striolo A 2011 J. Phys. Chem. C 115 2038 [58] Wang Y, Duan Z and Fan D 2013 Sci. Rep. 3 3505 [59] Rotenberg B, Patel A J and Chandler D 2011 J. Am. Chem. Soc. 133 20521 [60] Zhang J, Tan J, Pei R, Ye S and Luo Y 2021 J. Am. Chem. Soc. 143 13074 [61] Bista I,Wood J M D, Desvignes T, Mccarthy S A, Matschiner M, Ning Z, Tracey A, Torrance J, Sims Y, Chow W, Smith M, Oliver K, Haggerty L, Salzburger W, Postlethwait J H, Howe K, Clark M S, William Detrich H, Christina Cheng C H, Miska E A and Durbin R 2023 Nat. Commun. 14 3412 [62] Liou Y C, Tocilj A, Davies P L and Jia Z 2000 Nature 406 322 [63] Sicheri F and Yang D S 1995 Nature 375 427 [64] Marshall C B, Fletcher G L and Davies P L 2004 Nature 429 153 [65] Tas R P, Hendrix M M R M and Voets I K 2023 Proc. Natl. Acad. Sci. USA 120 e2212456120 [66] Bar Dolev M, Braslavsky I and Davies P L 2016 Annu. Rev. Biochem. 85 515 [67] Yeh Y and Feeney R E 1996 Chem. Rev. 96 601 [68] Zhang X, Yang J, Tian Y and Zhang L 2025 J. Am. Chem. Soc. 147 17682 [69] Liu Z, Zheng X and Wang J 2022 J. Am. Chem. Soc. 144 5685 [70] Fu Y, Li Y, Liu S and Chen J 2025 Trends Food Sci. Technol. 164 105252 [71] Eickhoff L, Dreischmeier K, Zipori A, Sirotinskaya V, Adar C, Reicher N, Braslavsky I, Rudich Y and Koop T 2019 Phys. Chem. Lett. 10 966 [72] Liu K,Wang C, Ma J, Shi G, Yao X, Fang H, Song Y andWang J 2016 Proc. Natl. Acad. Sci. USA 113 14739 [73] Fitzner M, Sosso G C, Cox S J and Michaelides A 2015 J. Am. Chem. Soc. 137 13658 [74] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K and Grigorieva I V 2015 Nature 519 443 [75] Jiang J, Gao Y, Li L, Liu Y, Zhu W, Zhu C, Francisco J S and Zeng X C 2024 Nat. Phys. 20 456 [76] Murray B J, O’sullivan D, Atkinson J D and Webb M E 2012 Chem. Soc. Rev. 41 6519 [77] He Z and Wang J 2022 The Innovation 3 100287 [78] Tang M, Cziczo D J and Grassian V H 2016 Chem. Rev. 116 4205 [79] Hudait A, Odendahl N, Qiu Y, Paesani F and Molinero V 2018 J. Am. Chem. Soc. 140 4905 [80] Hudait A, Moberg D R, Qiu Y, Odendahl N, Paesani F and Molinero V 2018 Proc. Natl. Acad. Sci. USA 115 8266 [81] Cui J, Battle K, Wierzbicki A and Madura J D 2009 Int. J. Quantum Chem. 109 73 [82] Nutt D R and Smith J C 2008 J. Am. Chem. Soc. 130 13066 [83] Meister K, Ebbinghaus S, Xu Y, Duman J G, Devries A, Gruebele M, Leitner D M and Havenith M 2013 Proc. Natl. Acad. Sci. USA 110 1617 [84] Midya U S and Bandyopadhyay S 2025 Adv. Theor. Simul. 8 2400642 [85] Lupi L, Hudait A, Peters B, Grünwald M, Gotchy Mullen R, Nguyen A H and Molinero V 2017 Nature 551 218 [86] Qiu Y, Odendahl N, Hudait A, Mason R, Bertram A K, Paesani F, Demott P J and Molinero V 2017 J. Am. Chem. Soc. 139 3052 [87] Hudait A, Moberg D R, Qiu Y, Odendahl N, Paesani F and Molinero V 2018 Proc. Natl. Acad. Sci. USA 115 8266 [88] Zhang Y,Wei N, Li L, Liu Y, Huang C, Li Z, Huang Y, Zhang D, Francisco J S, Zhao J, Wang C and Zeng X C 2025 J. Am. Chem. Soc. 147 4411 [89] Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A and Michaelides A 2016 Chem. Rev. 116 7078 [90] Zhang Y,Wei N, Li L, Liu Y, Huang C, Li Z, Huang Y, Zhang D, Francisco J S, Zhao J, Wang C and Zeng X C 2025 J. Am. Chem. Soc. 147 4411 [91] Michaelides A and Morgenstern K 2007 Nat. Mater. 6 597 [92] Cox S J, Kathmann S M, Slater B and Michaelides A 2015 J. Chem. Phys. 142 184704 [93] Zhang H, Du H, Zhu D, Zhao H, Zhang X, He F, Wang L, Lv C and Hao P 2024 ACS Appl. Mater. Interfaces 16 11084 [94] Lupi L, Hudait A and Molinero V 2014 J. Am. Chem. Soc.136 3156 [95] Liu J, Zhu C, Liu K, Jiang Y, Song Y, Francisco J S, Zeng X C and Wang J 2017 Proc. Natl. Acad. Sci. USA 114 11285 [96] Qiu H and Guo W 2019 J. Phys. Chem. Lett. 10 6316 [97] Lupi L and Molinero V 2014 J. Phys. Chem. A 118 7330 [98] Bi Y, Cabriolu R and Li T 2016 J. Phys. Chem. C 120 1507 [99] Davies M B, Fitzner M and Michaelides A 2022 Proc. Natl. Acad. Sci. USA 119 e2205347119 [100] Fu X and Zhou X 2023 Chin. Phys. B 32 28202 [101] Zhang C, Wang Y, Wang J and Zhou X 2022 J. Phys. Chem. C 126 13373 [102] Zielke S A, Bertram A K and Patey G N 2015 J. Phys. Chem. B 119 9049 [103] Huang Y, Liang W, Huang L, Zhang Y, Yang H, Wei N, Wang C and Sun Z 2024 J. Mol. Liq. 412 125854 [104] Sun G and Tanaka H 2025 J. Colloid Interface Sci. 698 137812 [105] Savolainen J, Ahmed S and Hamm P 2013 Proc. Natl. Acad. Sci. USA 110 20402 [106] Elgabarty H, Kampfrath T, Bonthuis D J, Balos V, Kaliannan N K, Loche P, Netz R R, Wolf M, Kühne T D and Sajadi M 2020 Sci. Adv. 6 eaay7074 [107] Zhu Z, Chang C, Shu Y and Song B 2020 J. Phys. Chem. Lett. 11 256 [108] Tonouchi M 2007 Nat. Photonics 1 97 [109] Fattinger C and Grischkowsky D 1989 Appl. Phys. Lett. 54 490 [110] Schmuttenmaer C A 2004 Chem. Rev. 104 1759 [111] Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910 [112] Carletti L, Mcdonnell C, Arregui Leon U, Rocco D, Finazzi M, Toma A, Ellenbogen T, Della Valle G, Celebrano M and De Angelis C 2023 ACS Photonics 10 3419 [113] Carr G L, Martin M C, Mckinney W R, Jordan K, Neil G R and Williams G P 2002 Nature 420 153 [114] Gopal A, Herzer S, Schmidt A, Singh P, Reinhard A, Ziegler W, Brömmel D, Karmakar A, Gibbon P, Dillner U, May T, Meyer H G and Paulus G G 2013 Phys. Rev. Lett. 111 074802 [115] Zhu Z, Zhu J, Chang C, Qi C, Zhu Z, Zhao H, Zhang D, Zeng X C and Wang C 2024 Nano Lett. 24 3243 [116] Zhang Q,Wu Y, Sun H, Zhu Z, Zhao H, Yang J,Wang J, Chen M, Song S, Zheng S, Zhang D, Yang H, Zhu Z andWang C 2025 The Innovation 6 100754 [117] Yuan Y, Lou J, Wu K, Yu Y, Li C, Peng W, Han Y, Li J and Chang C 2024 ACS Photonics 11 1473 [118] Zhang C, Yuan Y, Wu K, Wang Y, Zhu S, Shi J, Wang L, Li Q, Zuo X, Fan C, Chang C and Li J 2022 Nano Lett. 22 468 [119] Kou J, Lu H, Wu F, Fan J and Yao J 2014 Nano Lett. 14 4931 [120] Zhang Q L, Jiang W Z, Liu J, Miao R D and Sheng N 2013 Phys. Rev. Lett. 110 254501 [121] Zhang Q L, Yang R Y, Jiang W Z and Huang Z Q 2016 Nanoscale 8 1886 [122] Zhang J, He Y, Liang S, Liao X, Li T, Qiao Z, Chang C, Jia H and Chen X 2021 Nat. Commun. 12 2730 [123] Liu X, Qiao Z, Chai Y, Zhu Z, Wu K, Ji W, Li D, Xiao Y, Mao L, Chang C, Wen Q, Song B and Shu Y 2021 Proc. Natl. Acad. Sci. USA 118 e2015685118 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|