Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024206    DOI: 10.1088/1674-1056/ae27b5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev  

Unlocking plasmonic nanolaser performance via exciton-plasmon interaction dynamics

Ru Wang(王茹)1,†, Daotong You(游道通)3, Zhuxin Li(李竹新)4, Chuansheng Xia(夏传晟)5, Xiaoxuan Wang(王潇璇)5, Feifei Qin(秦飞飞)6, and Chunxiang Xu(徐春祥)2,‡
1 College of Physics and Electronic Engineering, Shanxi Normal University, Taiyuan 030031, China;
2 School of Electronic Science and Engineering, Southeast University, Nanjing 211189, China;
3 Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
4 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230031, China;
5 School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
6 GaN Optoelectronic Integration International Cooperation Joint Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Plasmonic nanolasers are transitioning from empirical optimization to a new paradigm driven by physical mechanisms. Owing to the lack of guidance from internal mechanisms, this transformation process remains highly challenging. Therefore, elucidating the governing nanoscale light-matter interactions has become essential for unlocking their full performance potential. In this paper, we establish a framework that connects the strength of exciton-plasmon interactions with plasmonic nanolaser performance. The evolution of the laser spectrum under increasing pumping fluence, reflected by variations in intensity, spectral peak position, and full width at half maximum, provides clear evidence of exciton-plasmon interactions. These interactions are further verified by changes in the emission lifetime with incident fluence, and it is found that the lifetime variation correlates with the change in spectral full width at half maximum. Furthermore, we calculate and analyze various loss mechanisms in plasmonic nanolasers, revealing how the strength of exciton-plasmon interactions actively modulates optical loss channels and fundamentally controls the lasing threshold. Understanding exciton-plasmon interaction dynamics is not merely a theoretical pursuit but a critical step toward realizing truly practical and scalable nanophotonic devices.
Keywords:  surface plasmon      nanolaser      linewidth      threshold      loss  
Received:  14 October 2025      Revised:  03 December 2025      Accepted manuscript online:  04 December 2025
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.47.D- (Time resolved spectroscopy (>1 psec))  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: This project was supported by the Natural Science Foundation of Anhui Jianzhu University (Grant No. 2023QDZ05), the National Natural Science Foundation of China (Grant Nos. 62204127 and 12304453), and the Shanxi Province Science Foundation for Youths (Grant No. 202503021212220).
Corresponding Authors:  Ru Wang, Chunxiang Xu     E-mail:  wangru@sxnu.edu.cn;xcxseu@seu.edu.cn

Cite this article: 

Ru Wang(王茹), Daotong You(游道通), Zhuxin Li(李竹新), Chuansheng Xia(夏传晟), Xiaoxuan Wang(王潇璇), Feifei Qin(秦飞飞), and Chunxiang Xu(徐春祥) Unlocking plasmonic nanolaser performance via exciton-plasmon interaction dynamics 2026 Chin. Phys. B 35 024206

[1] Liang Y, Li C, Huang Y Z and Zhang Q 2020 ACS Nano 14 14375
[2] Ma R M and Wang S Y 2021 Nanophotonics 10 3623
[3] Ma R M and Oulton R F 2019 Nat. Nanotechnol. 14 12
[4] Zhao D, Wang X, Chen Y, Rao X, Gao J, Qi Y, Yang H and Zheng X 2025 Opt. Commun. 596 132421
[5] Gao J, Wang X, Chen Y, Zhao D, Qi Y and Yang H 2025 J. Opt. Soc. Am. B 42 742
[6] Ellis T C, Eslami S and Palomba S 2024 Nanophotonics 13 2707
[7] Ning C Z 2021 Nanophotonics 10 3619
[8] Wang R, Wang C, Ma Y, Sun J, Yan P, Xu C and Pan C 2023 Adv. Opt. Mater. 11 2203137
[9] Khurgin J B and Noginov M A 2021 Laser Photonics Rev. 15 2000250
[10] Li H, Huang Z T, Hong K B, Hsu C Y, Chen J W, Cheng C W, Chen K P, Lin T R, Gwo S J and Lu T C 2020 Adv. Sci. 7 2001823
[11] Huang Z T, Yin C W, Hong Y H, Li H, Hong K B, Kao T S, Shih M H and Lu T C 2021 Adv. Opt. Mater. 9 2100299
[12] Jia X, Wang J, Huang Z, Chu K, Ren K, Sun M, Wang Z, Jin P, Liu K and Qu S 2022 J. Mater. Chem. C 10 680
[13] Jiang D, Li P, Liu B, Huang K, Tao T, Zhi T, Yan Y, Xie Z, Kang J, Zheng Y and Zhang R 2022 ACS Appl. Nano Mater. 5 16971
[14] Vitale F, Repp D, Siefke T, Zeitner U, Peschel U, Pertsch T and Ronning C 2023 Appl. Phys. Lett. 122 101104
[15] Li M, Lu J, Wan P, Jiang M, Mo Y and Pan C 2024 Adv. Funct. Mater. 34 2403840
[16] Chou Y H,Wu Y M, Hong K B, Chou B T, Shih J H, Chung Y C, Chen P Y, Lin T R, Lin C C, Lin S D and Lu T C 2016 Nano Lett. 16 3179
[17] Wang S,Wang X Y, Li B, Chen H Z,Wang Y L, Dai L, Oulton R F and Ma R M 2017 Nat. Commun. 8 1889
[18] Chou Y H, Hong K B, Chung Y C, Chang C T, Chou B T, Lin T R, Arakelian S M, Alodjants A P and Lu T C 2017 IEEE J. Sel. Top. Quantum Electron. 23 1
[19] Lu J, Jiang M, Wei M, Xu C, Wang S, Zhu Z, Qin F, Shi Z and Pan C 2017 ACS Photonics 4 2419
[20] Wang S L,Wang S, Man X K and Ma RM2020 Nanophotonics 9 3403
[21] Wang R, Xu C X, You D T,Wang X X, Chen J P, Shi Z L, Cui Q N and Qiu T 2021 Nanoscale 13 6780
[22] Chang S W, Lin T R and Chuang S L 2010 Opt. Express 18 15039
[23] Bennett B R, Soref R A and Delalamo J A 1990 IEEE J. Quantum Electron. 26 113
[1] Visual perception and density-sensitive interaction in active agent system
Fei Meng(孟飞), Weiqiang Ma(马维强), Run Cheng(程润), and Jun Wang(王骏). Chin. Phys. B, 2026, 35(1): 018702.
[2] Enhanced photothermal performance of dielectric silicon attached with multiple plasmonic gold nanoparticles
Xiangyu Tong(佟翔宇), Ning Chen(陈宁), Xiaowen Chen(陈晓文), Bin Zhang(张斌), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2025, 34(8): 087803.
[3] Surface-pitted TiN nanoparticles for direct absorption solar collectors
Heng Zhang(张衡), Yuchun Cao(曹玉春), Xiaowen Chen(陈晓文), Qihang Yang(杨起航), Ning Chen(陈宁), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2025, 34(6): 068101.
[4] A pure quantum secret sharing scheme based on GHZ basis measurement and quantum entanglement exchange
Bai Liu(刘白), Jun Zhang(张俊), Shupin Qiu(邱书品), and Mingwu Zhang(张明武). Chin. Phys. B, 2025, 34(3): 030304.
[5] An adjustment-free laser resonator based on micron-scale corner cube array
Pengyuan Chang(常鹏媛), Xinrong Huang(黄欣荣), Caolei Fu(傅曹雷), Aiping Liu(刘爱萍), Duo Pan(潘多), Zhiyang Wang(王志洋), and Jingbiao Chen(陈景标). Chin. Phys. B, 2025, 34(3): 034201.
[6] Excitation threshold of solitons in anharmonic chains
Yi Ming(明燚). Chin. Phys. B, 2025, 34(2): 020501.
[7] Triadic percolation in computer virus spreading dynamics
Jie Gao(高杰), Jianfeng Luo(罗建锋), Xing Li(李星), Yihong Li(李毅红), Zunguang Guo(郭尊光), and Xiaofeng Luo(罗晓峰). Chin. Phys. B, 2025, 34(2): 028701.
[8] Observation of momentum-induced broadening of width in narrow Feshbach resonances of ultracold 133Cs atoms
Zhennan Liu(刘震南), Hongxing Zhao(赵宏星), Yunfei Wang(王云飞), Yuqing Li(李玉清), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Peng Li(李鹏), Yongming Fu(付永明), Liantuan Xiao(肖连团), Jie Ma(马杰), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(2): 023701.
[9] Displacement damage effects on the p-GaN HEMT induced by neutrons at Back-n in the China Spallation Neutron Source
Yu-Fei Liu(刘宇飞), Li-Li Ding(丁李利), Yuan-Yuan Xue(薛院院), Shu-Xuan Zhang(张书瑄), Wei Chen(陈伟), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2025, 34(10): 106102.
[10] Displacement damage of the space broad-spectrum proton in semiconductor materials
Yue-Qian Jiang(姜月千), Li-Chao Tian(田立朝), Guo-Bo Zhang(张国博), Run-Zhou Yu(余润洲), Bi-Hao Xu(徐碧浩), Xiang-Cheng Li(李翔城), Yan-Qing Deng(邓彦卿), De-Bin Zou(邹德滨), Tong Wu(吴桐), Yan-Yun Ma(马燕云), and Xiao-Hu Yang(杨晓虎). Chin. Phys. B, 2025, 34(10): 106103.
[11] Giant enhancement of negative friction by resonant coupling between localized surface phonon polaritons and graphene plasmonics
Kaipeng Liu(柳开鹏), Shuai Zhou(周帅), Shiwei Dai(戴士为), and Lixin Ge(葛力新). Chin. Phys. B, 2025, 34(1): 014202.
[12] In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
Hao-Ran Tao(陶浩然), Lei Du(杜磊), Liang-Liang Guo(郭亮亮), Yong Chen(陈勇), Hai-Feng Zhang(张海峰), Xiao-Yan Yang(杨小燕), Guo-Liang Xu(徐国良), Chi Zhang(张 驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090310.
[13] CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization
Chen Dong(董晨), Gui-Qiong Xu(徐桂琼), and Lei Meng(孟蕾). Chin. Phys. B, 2024, 33(8): 088901.
[14] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[15] Verifiable quantum secret sharing scheme based on orthogonal product states
Chen-Ming Bai(白晨明), Lu Liu(刘璐), and Sujuan Zhang(张素娟). Chin. Phys. B, 2024, 33(7): 070302.
No Suggested Reading articles found!