Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027202    DOI: 10.1088/1674-1056/ae2116
SPECIAL TOPIC — Moiré physics in two-dimensional materials Prev   Next  

Electronic correlations and topological states at the interface of twisted bilayer graphene and chromium oxychloride

Minsheng Li(李旻晟)1, Zehao Jia(贾泽浩)1, Xiangyu Cao(曹翔宇)1, Qiang Ma(马强)1, Chang Jiang(蒋昶)1, Yuda Zhang(张钰达)1, Linfeng Ai(艾临风)1, Pengliang Leng(冷鹏亮)1, and Faxian Xiu(修发贤)1,2,3,4,†
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
2 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China;
3 Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China;
4 Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
Abstract  When two layers of graphene are stacked with a twist angle of approximately 1.1°, strong interlayer coupling gives rise to a pair of flat bands in twisted bilayer graphene (TBG), resulting in pronounced electron-electron interactions. At half filling of the flat bands, TBG exhibits correlated insulating states. Here, we investigate the electrical transport properties of heterostructures composed of TBG and the antiferromagnetic insulator chromium oxychloride (CrOCl), and propose a strategy to modulate the correlated insulating states in TBG. During the transition from a conventional phase to a strong interfacial coupling phase, kink-like features are observed in the charge neutrality point (CNP), correlated insulating state, and band insulating state. Under a perpendicular magnetic field, the system exhibits broadened quantum Hall plateaus in the strong interfacial coupling regime. Electrons localized in the CrOCl layer screen the bottom gate, rendering the carrier density in TBG less sensitive to variations in the bottom gate voltage. These phenomena are well captured by a charge-transfer model between TBG and CrOCl. Our results provide insights into the control of electronic correlations and topological states in graphene moiré systems via interfacial charge coupling.
Keywords:  twisted bilayer graphene      correlated insulating state      CrOCl      interfacial coupling      charge transfer  
Received:  09 October 2025      Revised:  14 November 2025      Accepted manuscript online:  19 November 2025
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.43.f  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52225207 and 52350001), the Shanghai Pilot Program for Basic Research–Fudan University 21TQ1400100 (Grant No. 21TQ006), and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01).
Corresponding Authors:  Faxian Xiu     E-mail:  Faxian@fudan.edu.cn

Cite this article: 

Minsheng Li(李旻晟), Zehao Jia(贾泽浩), Xiangyu Cao(曹翔宇), Qiang Ma(马强), Chang Jiang(蒋昶), Yuda Zhang(张钰达), Linfeng Ai(艾临风), Pengliang Leng(冷鹏亮), and Faxian Xiu(修发贤) Electronic correlations and topological states at the interface of twisted bilayer graphene and chromium oxychloride 2026 Chin. Phys. B 35 027202

[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[3] Stepanov P, Das I, Lu X, Fahimniya A,Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L and Efetov D K 2020 Nature 583 375
[4] Saito Y, Ge J,Watanabe K, Taniguchi T and Young A F 2020 Nat. Phys. 16 926
[5] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 31
[6] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605
[7] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2021 Nano Lett. 21 4299
[8] Tschirhart C L, Serlin M, Polshyn H, Shragai A, Xia Z, Zhu J, Zhang Y, Watanabe K, Taniguchi T, Huber M E and Young A F 2021 Science 372 1323
[9] Grover S, Bocarsly M, Uri A, Stepanov P, Di Battista G, Roy I, Xiao J, Meltzer A Y, Myasoedov Y, Pareek K, Watanabe K, Taniguchi T, Yan B, Stern A, Berg E, Efetov D K and Zeldov E 2022 Nat. Phys. 18 885
[10] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[11] Lu X, Stepanov P, YangW, Xie M, AamirMA, Das I, Urgell C,Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653
[12] Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nat. Phys. 17 1210
[13] Rodan-Legrain D, Cao Y, Park J M, de la Barrera S C, Randeria M T, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nat. Nanotechnol. 16 769
[14] Zhang Z, Wen L, Qiao Y and Li Z 2023 Chin. Phys. B 32 107302
[15] Li S, Wang Z, Xue Y, Cao L, Watanabe K, Taniguchi T, Gao H and Mao J 2023 Chin. Phys. B 32 067304
[16] Niu R, Han X, Qu Z, Wang Z, Li Z, Liu Q, Han C and Lu J 2023 Chin. Phys. B 32 017202
[17] Zhang T, Wang Y, Li H, Zhong F, Shi J, Wu M, Sun Z, ShenW, Wei B, Hu W, Liu X, Huang L, Hu C, Wang Z, Jiang C, Yang S, Zhang Q M and Qu Z 2019 ACS Nano 13 11353
[18] Gu P, Sun Y, Wang C, Peng Y, Zhu Y, Cheng X, Yuan K, Lyu C, Liu X, Tan Q, Zhang Q, Gu L, Wang Z, Wang H, Han Z, Watanabe K, Taniguchi T, Yang J, Zhang J, Ji W, Tan P H and Ye Y 2022 Nano Lett. 22 1233
[19] Miao N, Xu B, Zhu L, Zhou J and Sun Z 2018 J. Am. Chem. Soc. 140 2417
[20] Li S, Zhang J, Li Y, Zhang K, Zhu L, Gao W, Li J and Huo N 2023 Appl. Phys. Lett. 122 083503
[21] Wang Y, Gao X, Yang K, Gu P, Lu X, Zhang S, Gao Y, Ren N, Dong B, Jiang Y, Watanabe K, Taniguchi T, Kang J, Lou W, Mao J, Liu J, Ye Y, Han Z, Chang K, Zhang J and Zhang Z 2022 Nat. Nanotechnol. 17 1272
[22] Ying B, Xin B, Li M, Zhou S, Liu Q, Zhu Z, Qin S, Wang W H and Zhu M 2024 ACS Appl. Mater. Interfaces 16 43806
[23] Yang K, Gao X, Wang Y, Zhang T, Gao Y, Lu X, Zhang S, Liu J, Gu P, Luo Z, Zheng R, Cao S, Wang H, Sun X, Watanabe K, Taniguchi T, Li X, Zhang J, Dai X, Chen J H, Ye Y and Han Z 2023 Nat. Commun. 14 2136
[24] Lu X, Zhang S, Wang Y, Gao X, Yang K, Guo Z, Gao Y, Ye Y, Han Z and Liu J 2023 Nat. Commun. 14 5550
[25] Cao S, Zheng R, Wang C, Ma N, Chen M, Song Y, Feng Y, Hao T, Zhang Y, Wang Y, Gu P, Watanabe K, Taniguchi T, Liu Y, Xie X C, Ji W, Ye Y, Han Z and Chen J H 2025 Adv. Mater. 37 e2411300
[26] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, Macdonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404
[27] Maher P, Wang L, Gao Y, Forsythe C, Taniguchi T, Watanabe K, Abanin D, Papić Z, Cadden-Zimansky P, Hone J, Kim P and Dean C R 2014 Science 345 61
[28] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[29] Bistritzer R and MacDonald A H 2011 Proc. Natl Acad. Sci. USA 108 12233
[30] Tseng C C, Song T, Jiang Q, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire M A, Xiao D, Chu J H, Cobden D H, Xu X and Yankowitz M 2022 Nano Lett. 22 8495
[31] Liu D, Zhou Y, Zheng S, Liu X, Sun J, Li Z, Zhang Z, Zhang Z, Wang S, Cai D, Cheng Y and Huang W 2023 ACS Appl. Electron. Mater. 5 3973
[1] Exciton and valley dynamics in WSe2/GaAs heterostructure
Xin Wei(魏鑫), Yuanhe Li(李元和), Wenkai Zhu(朱文凯), Rongkun Han(韩荣坤), Jianhua Zhao(赵建华), Kaiyou Wang(王开友), and Xinhui Zhang(张新惠). Chin. Phys. B, 2025, 34(9): 096701.
[2] Layer-dependent exciton dynamics in InSe/WS2 heterostructures
Siyao Li(李思垚), Yufan Wang(王雨凡), Zhiqiang Ming(明志强), Yong Liu(刘勇), Lanyu Huang(黄岚雨), Siman Liu(刘思嫚), Jialong Li(李佳龙), Yulin Chen(成昱霖), Zhoujuan Xu(徐周娟), Zeyu Liu(刘泽宇), Danliang Zhang(张丹亮), and Xiao Wang(王笑). Chin. Phys. B, 2025, 34(9): 097802.
[3] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[4] Second-order topological insulator in twisted bilayer graphene with small twist angles
Fenghua Qi(戚凤华), Jie Cao(曹杰), Xingfei Zhou(周兴飞), and Guojun Jin(金国钧). Chin. Phys. B, 2025, 34(11): 116801.
[5] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[6] Valley-dependent transport in a mescoscopic twisted bilayer graphene device
Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017205.
[7] Anomalous photoluminescence enhancement and resonance charge transfer in type-II 2D lateral heterostructures
Chun-Yan Zhao(赵春艳), Sha-Sha Li(李莎莎), and Yong Yan(闫勇). Chin. Phys. B, 2023, 32(8): 087801.
[8] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[9] Theoretical investigation on the fluorescent sensing mechanism for recognizing formaldehyde: TDDFT calculation and excited-state nonadiabatic dynamics
Yunfan Yang(杨云帆), Lujia Yang(杨璐佳), Fengcai Ma(马凤才), Yongqing Li(李永庆), and Yue Qiu(邱岳). Chin. Phys. B, 2023, 32(5): 057801.
[10] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[11] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[12] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[13] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[14] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[15] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
No Suggested Reading articles found!