| SPECIAL TOPIC — Moiré physics in two-dimensional materials |
Prev
Next
|
|
|
Electronic correlations and topological states at the interface of twisted bilayer graphene and chromium oxychloride |
| Minsheng Li(李旻晟)1, Zehao Jia(贾泽浩)1, Xiangyu Cao(曹翔宇)1, Qiang Ma(马强)1, Chang Jiang(蒋昶)1, Yuda Zhang(张钰达)1, Linfeng Ai(艾临风)1, Pengliang Leng(冷鹏亮)1, and Faxian Xiu(修发贤)1,2,3,4,† |
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China; 2 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China; 3 Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; 4 Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China |
|
|
|
|
Abstract When two layers of graphene are stacked with a twist angle of approximately 1.1°, strong interlayer coupling gives rise to a pair of flat bands in twisted bilayer graphene (TBG), resulting in pronounced electron-electron interactions. At half filling of the flat bands, TBG exhibits correlated insulating states. Here, we investigate the electrical transport properties of heterostructures composed of TBG and the antiferromagnetic insulator chromium oxychloride (CrOCl), and propose a strategy to modulate the correlated insulating states in TBG. During the transition from a conventional phase to a strong interfacial coupling phase, kink-like features are observed in the charge neutrality point (CNP), correlated insulating state, and band insulating state. Under a perpendicular magnetic field, the system exhibits broadened quantum Hall plateaus in the strong interfacial coupling regime. Electrons localized in the CrOCl layer screen the bottom gate, rendering the carrier density in TBG less sensitive to variations in the bottom gate voltage. These phenomena are well captured by a charge-transfer model between TBG and CrOCl. Our results provide insights into the control of electronic correlations and topological states in graphene moiré systems via interfacial charge coupling.
|
Received: 09 October 2025
Revised: 14 November 2025
Accepted manuscript online: 19 November 2025
|
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
| |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
| |
73.43.f
|
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52225207 and 52350001), the Shanghai Pilot Program for Basic Research–Fudan University 21TQ1400100 (Grant No. 21TQ006), and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). |
Corresponding Authors:
Faxian Xiu
E-mail: Faxian@fudan.edu.cn
|
Cite this article:
Minsheng Li(李旻晟), Zehao Jia(贾泽浩), Xiangyu Cao(曹翔宇), Qiang Ma(马强), Chang Jiang(蒋昶), Yuda Zhang(张钰达), Linfeng Ai(艾临风), Pengliang Leng(冷鹏亮), and Faxian Xiu(修发贤) Electronic correlations and topological states at the interface of twisted bilayer graphene and chromium oxychloride 2026 Chin. Phys. B 35 027202
|
[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [3] Stepanov P, Das I, Lu X, Fahimniya A,Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L and Efetov D K 2020 Nature 583 375 [4] Saito Y, Ge J,Watanabe K, Taniguchi T and Young A F 2020 Nat. Phys. 16 926 [5] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 31 [6] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 [7] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2021 Nano Lett. 21 4299 [8] Tschirhart C L, Serlin M, Polshyn H, Shragai A, Xia Z, Zhu J, Zhang Y, Watanabe K, Taniguchi T, Huber M E and Young A F 2021 Science 372 1323 [9] Grover S, Bocarsly M, Uri A, Stepanov P, Di Battista G, Roy I, Xiao J, Meltzer A Y, Myasoedov Y, Pareek K, Watanabe K, Taniguchi T, Yan B, Stern A, Berg E, Efetov D K and Zeldov E 2022 Nat. Phys. 18 885 [10] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [11] Lu X, Stepanov P, YangW, Xie M, AamirMA, Das I, Urgell C,Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 [12] Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nat. Phys. 17 1210 [13] Rodan-Legrain D, Cao Y, Park J M, de la Barrera S C, Randeria M T, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nat. Nanotechnol. 16 769 [14] Zhang Z, Wen L, Qiao Y and Li Z 2023 Chin. Phys. B 32 107302 [15] Li S, Wang Z, Xue Y, Cao L, Watanabe K, Taniguchi T, Gao H and Mao J 2023 Chin. Phys. B 32 067304 [16] Niu R, Han X, Qu Z, Wang Z, Li Z, Liu Q, Han C and Lu J 2023 Chin. Phys. B 32 017202 [17] Zhang T, Wang Y, Li H, Zhong F, Shi J, Wu M, Sun Z, ShenW, Wei B, Hu W, Liu X, Huang L, Hu C, Wang Z, Jiang C, Yang S, Zhang Q M and Qu Z 2019 ACS Nano 13 11353 [18] Gu P, Sun Y, Wang C, Peng Y, Zhu Y, Cheng X, Yuan K, Lyu C, Liu X, Tan Q, Zhang Q, Gu L, Wang Z, Wang H, Han Z, Watanabe K, Taniguchi T, Yang J, Zhang J, Ji W, Tan P H and Ye Y 2022 Nano Lett. 22 1233 [19] Miao N, Xu B, Zhu L, Zhou J and Sun Z 2018 J. Am. Chem. Soc. 140 2417 [20] Li S, Zhang J, Li Y, Zhang K, Zhu L, Gao W, Li J and Huo N 2023 Appl. Phys. Lett. 122 083503 [21] Wang Y, Gao X, Yang K, Gu P, Lu X, Zhang S, Gao Y, Ren N, Dong B, Jiang Y, Watanabe K, Taniguchi T, Kang J, Lou W, Mao J, Liu J, Ye Y, Han Z, Chang K, Zhang J and Zhang Z 2022 Nat. Nanotechnol. 17 1272 [22] Ying B, Xin B, Li M, Zhou S, Liu Q, Zhu Z, Qin S, Wang W H and Zhu M 2024 ACS Appl. Mater. Interfaces 16 43806 [23] Yang K, Gao X, Wang Y, Zhang T, Gao Y, Lu X, Zhang S, Liu J, Gu P, Luo Z, Zheng R, Cao S, Wang H, Sun X, Watanabe K, Taniguchi T, Li X, Zhang J, Dai X, Chen J H, Ye Y and Han Z 2023 Nat. Commun. 14 2136 [24] Lu X, Zhang S, Wang Y, Gao X, Yang K, Guo Z, Gao Y, Ye Y, Han Z and Liu J 2023 Nat. Commun. 14 5550 [25] Cao S, Zheng R, Wang C, Ma N, Chen M, Song Y, Feng Y, Hao T, Zhang Y, Wang Y, Gu P, Watanabe K, Taniguchi T, Liu Y, Xie X C, Ji W, Ye Y, Han Z and Chen J H 2025 Adv. Mater. 37 e2411300 [26] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, Macdonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404 [27] Maher P, Wang L, Gao Y, Forsythe C, Taniguchi T, Watanabe K, Abanin D, Papić Z, Cadden-Zimansky P, Hone J, Kim P and Dean C R 2014 Science 345 61 [28] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820 [29] Bistritzer R and MacDonald A H 2011 Proc. Natl Acad. Sci. USA 108 12233 [30] Tseng C C, Song T, Jiang Q, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire M A, Xiao D, Chu J H, Cobden D H, Xu X and Yankowitz M 2022 Nano Lett. 22 8495 [31] Liu D, Zhou Y, Zheng S, Liu X, Sun J, Li Z, Zhang Z, Zhang Z, Wang S, Cai D, Cheng Y and Huang W 2023 ACS Appl. Electron. Mater. 5 3973 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|