|
|
|
High-Z benchmarking: Probing the sub-eV frontier and an extensive Li-like uranium atomic dataset |
| Shuang Li(李双)†, Yan Wang(王燕), Xue-Lian Chong(崇雪莲), Yan-Ran Luo(罗嫣然), and Fan Zhang(张凡) |
| School of Electrical and Optoelectronic Engineering, West Anhui University, Luan 237012, China |
|
|
|
|
Abstract Recent theoretical investigations into the excitation energies of the high-$Z$ lithium isoelectronic sequence (Li-like) ions have revealed significant discrepancies [Eur. Phys. J. Plus 137 1253 (2022)], with deviations between the methods employed reaching up to $\sim$ 40 eV for U$^{89+}$. In this work, we address this issue through a comprehensive study of Li-like uranium (U$^{89+}$), calculating the lowest 35 levels of the $\rm 1s^{2}$$nl$ ($n \leq 6$) configurations. We employ two independent relativistic methods: the multiconfiguration Dirac-Hartree-Fock (MCDHF) method implemented in the GRASP2K code, and the relativistic configuration interaction (RCI) method within the Flexible Atomic Code (FAC). Our calculations resolve the discrepancies, achieving excellent mutual agreement and reducing deviations from experimental benchmarks to within $\sim2$ eV. Furthermore, we identify the bottlenecks to achieving sub-eV accuracy for each method in the strong-field, high-$Z$ regime. To the best of our knowledge, this is the most extensive dataset for this ion to date, including excitation energies, lifetimes, and radiative properties for allowed (E1) and forbidden (M1, E2, M2) transitions. Estimated uncertainties for most strong allowed and forbidden transitions remain below 1 % and 2 %, respectively, rendering this dataset valuable for applications in plasma spectroscopy. The dataset that supported the findings of this study is available in Science Data Bank at https://doi.org/10.57760/sciencedb.32492.
|
Received: 21 October 2025
Revised: 19 December 2025
Accepted manuscript online: 25 December 2025
|
|
PACS:
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
| |
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
| |
31.15.xr
|
(Self-consistent-field methods)
|
| |
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
| Fund: Project supported by the Research Foundation for Higher Level Talents of West Anhui University (Grant No. WGKQ2021005) and the Research Projects of West Anhui University (Grant No. WXZR202418). The author (S. L.) acknowledges the support from the Visiting Researcher Programs at Fudan University (C. Y. Chen’s research group) and the Institute of Applied Physics and Computational Mathematics (J. Yan’s research group). The author (S. L.) would also like to express his gratitude to Ai-JiaWang, Chen-Jie Xi, Xiang Gao, and Ying-Hong Shi for many valuable discussions during this research. |
Corresponding Authors:
Shuang Li
E-mail: shuangli09@fudan.edu.cn
|
Cite this article:
Shuang Li(李双), Yan Wang(王燕), Xue-Lian Chong(崇雪莲), Yan-Ran Luo(罗嫣然), and Fan Zhang(张凡) High-Z benchmarking: Probing the sub-eV frontier and an extensive Li-like uranium atomic dataset 2026 Chin. Phys. B 35 023103
|
[1] Barnes J, Zhu Y L, Lund K A, Sprouse T M, Vassh N, McLaughlin G C, Mumpower M R and Surman R 2021 Astrophys. J. 918 44 [2] Loetzsch R, Beyer H F, Duval L, et al. 2024 Nature 625 673 [3] Smits O R, Indelicato P, NazarewiczW, PiibelehtMand Schwerdtfeger P 2023 Phys. Rep. 1035 1 [4] King S A, Spiess L J and Micke P, et al. 2022 Nature 611 43 [5] Li S, Zhao M, Liu G Q, Hu C B and Pan G Z 2023 Chin. Phys. B 32 103101 [6] Li S, Zhou J, Zhu L H, Mei X F and Yan J 2024 Chin. Phys. B 33 103102 [7] Rodrigues G C, Ourdane M A, Bieroń J, Indelicato P and Lindroth E 2000 Phys. Rev. A 63 012510 [8] Shabaev V M, Tupitsyn I I, KaygorodovMY, Kozhedub Y S, Malyshev A V and Mironova D V 2020 Phys. Rev. A 101 052502 [9] Li M C, Si R, Brage T, Hutton R and Zou Y M 2018 Phys. Rev. A 98 020502 [10] Si R, Guo X L, Brage T, Chen C Y, Hutton R and Fischer C F 2018 Phys. Rev. A 98 012504 [11] Li S 2024 arXiv:2412.10613 [physics.atom-ph] [12] Yerokhin V A and Surzhykov A 2018 J. Phys. Chem. Ref. Data 47 023105 [13] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184 [14] Jönsson P, Gaigalas G, Fischer C F, et al. 2023 Atoms 11 68 [15] Gu M F 2008 Can. J. Phys. 86 675 [16] Kumar P, Goyal A and Mohan M 2022 Eur. Phys. J. Plus 137 1253 [17] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207 [18] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249 [19] Jönsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597 [20] Beiersdorfer P, Chen H, Thorn D B and Träbert E 2005 Phys. Rev. Lett. 95 233003 [21] Beiersdorfer P, Elliott S R, Osterheld A, Stöhlker T, Autrey J, Brown G V, Smith A J and Widmann K 1996 Phys. Rev. A 53 4000 [22] Desclaux J P 1975 Comput. Phys. Commun. 9 31 [23] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197 [24] Bilous P, Cheung C and Safronova M 2024 Phys. Rev. A 110 042818 [25] Bilous P, Palffy A and Marquardt F 2023 Phys. Rev. Lett. 131 133002 [26] Ma K C, Yang C, Zhang J Y, Li Y F, Jiang G and Chai J J 2024 Entropy 26 962 [27] Chen Z B 2024 J. Quant. Spectrosc. Radiat. Transf. 324 109078 [28] Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004 [29] Jönsson P, Godefroid M, Gaigalas G, et al. 2022 Atoms 11 7 [30] Wang K, Si R, Dang W, et al. 2016 Astrophys. J. Suppl. Ser. 223 3 [31] Wang K, Jönsson P, Ekman J, Gaigalas G, Godefroid M R, Si R, Chen Z B, Li S, Chen C Y and Yan J 2017 Astrophys. J. Suppl. Ser. 229 37 [32] Si R, Li S, Guo X L, Chen Z B, Brage T, Jönsson P, Wang K, Yan J, Chen C Y and Zou Y M 2016 Astrophys. J. Suppl. Ser. 227 16 [33] Wang K, Chen Z B, Si R, et al. 2016 Astrophys. J. Suppl. Ser. 226 14 [34] Dyall K G 1986 Aust. J. Phys. 39 667 [35] Schweppe J, Belkacem A, Blumenfeld L, et al. 1991 Phys. Rev. Lett. 66 1434 [36] Beiersdorfer P, Knapp D, Marrs R E, Elliott S R and Chen M H 1993 Phys. Rev. Lett. 71 3939 [37] Slater J C 1951 Phys. Rev. 81 385 [38] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [40] Krieger J B, Li Y and Iafrate G J 1992 Phys. Rev. A 46 5453 [41] Vydrov O A and Scuseria G E 2006 J. Chem. Phys. 125 234109 [42] Talman J D and Shadwick W F 1976 Phys. Rev. A 14 36 [43] Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513 [44] Sapirstein J and Cheng K T 2011 Phys. Rev. A 83 012504 [45] Blundell S A 1993 Phys. Rev. A 47 1790 [46] Johnson W R, Liu Z W and Sapirstein J 1996 At. Data Nucl. Data Tables 64 279 [47] Fischer C F 2009 Phys. Scr. T134 014019 [48] Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215 [49] Zhang H L, Sampson D H and Fontes C J 1990 At. Data Nucl. Data Tables 44 31 [50] Cheng K T, Kim Y K and Desclaux J P 1979 At. Data Nucl. Data Tables 24 111 [51] Kozhedub Y S, Andreev O V, Shabaev V M, Tupitsyn I I, Brandau C, Kozhuharov C, Plunien G and Stöhlker T 2008 Phys. Rev. A 77 032501 [52] Malyshev A V, Kozhedub Y S and Shabaev VM2023 Phys. Rev. A 107 042806 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|