|
|
|
Quantum steering for two-mode states with continuous-variable in laser channel |
| Kaimin Zheng(郑凯敏)1, Jifeng Sun(孙继峰)2, Liyun Hu(胡利云)2,†, and Lijian Zhang(张利剑)1,‡ |
1 National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China; 2 Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022, China |
|
|
|
|
Abstract Einstein-Podolsky-Rosen (EPR) steering is an important resource for one-sided device-independent quantum information processing. This steering property can be destroyed by the interaction between a quantum system and its environment in practical applications. In this paper, we employ the characteristic function representation of probability distributions to investigate the quantum steering of two-mode continuous-variable states in a laser channel, where both the gain factor and the loss effect are taken into account. Firstly, we analyse the steering time of the two-mode squeezed vacuum state under one-mode and two-mode laser channels, respectively. We find that the gain process introduces additional noise into the two-mode squeezed vacuum state, thereby reducing the steerable time. Secondly, by quantifying EPR steering, we show that two-side loss exhibits smaller steerability than one-side loss, although they share the same two-way steerable time. In addition, we find that the more-gained party can steer the other party's state, whereas the other party cannot steer the gained party beyond a certain threshold value. In this sense, the gain effect in one party appears to be equivalent to the loss effect in the other party. Our results pave the way for the distillation of EPR steering and quantum information processing in practical quantum channels.
|
Received: 17 September 2025
Revised: 27 October 2025
Accepted manuscript online: 28 October 2025
|
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
| |
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
| |
03.67.-a
|
(Quantum information)
|
| |
03.67.Hk
|
(Quantum communication)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grants No. 12404410, 12564049, 11964013, and 61975077), the National Key Research and Development Program of China (Grant No. 2024ZD0300900), and the Jiangxi Provincial Natural Science Foundation (Grant No. 20242BAB26009). |
Corresponding Authors:
Liyun Hu, Lijian Zhang
E-mail: hlyun@jxnu.edu.cn;lijian.zhang@nju.edu.cn
|
Cite this article:
Kaimin Zheng(郑凯敏), Jifeng Sun(孙继峰), Liyun Hu(胡利云), and Lijian Zhang(张利剑) Quantum steering for two-mode states with continuous-variable in laser channel 2026 Chin. Phys. B 35 020304
|
[1] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555 [2] Reid M, Drummond P, BowenW, Cavalcanti E G, Lam P K, Bachor H, Andersen U L and Leuchs G 2009 Rev. Mod. Phys. 81 1727 [3] Gallego R and Aolita L 2015 Phys. Rev. X 5 041008 [4] He Q, Gong Q and Reid M 2015 Phys. Rev. Lett. 114 060402 [5] Cavalcanti D and Skrzypczyk P 2016 Rep. Prog. Phys. 80 024001 [6] Uola R, Costa A C, Nguyen H C and Gühne O 2020 Rev. Mod. Phys. 92 015001 [7] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 [8] Meng H X, Zhou J, Jiang S H, Xu Z P, Ren C, Su H Y and Chen J L 2018 Opt. Commun. 425 101 [9] Armstrong S, Wang M, Teh R Y, Gong Q, He Q, Janousek J, Bachor H A, Reid M D and Lam P K 2015 Nat. Phys. 11 167 [10] Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F and Guo G C 2016 Phys. Rev. Lett. 116 160404 [11] Deng X, Xiang Y, Tian C, Adesso G, He Q, Gong Q, Su X, Xie C and Peng K 2017 Phys. Rev. Lett. 118 230501 [12] Tischler N, Ghafari F, Baker T J, et al. 2018 Phys. Rev. Lett. 121 100401 [13] Cavailles A, Le Jeannic H, Raskop J, Guccione G, Markham D, Diamanti E, Shaw M D, Verma V B, Nam S W and Laurat J 2018 Phys. Rev. Lett. 121 170403 [14] Weston M M, Slussarenko S, Chrzanowski H M, Wollmann S, Shalm L K, Verma V B, Allman M S, Nam S W and Pryde G J 2018 Sci. Adv. 4 e1701230 [15] Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 6 845 [16] Sun K, Xu J S, Ye X J, Wu Y C, Chen J L, Li C F and Guo G C 2014 Phys. Rev. Lett. 113 140402 [17] Li C M, Chen K, Chen Y N, Zhang Q, Chen Y A and Pan J W 2015 Phys. Rev. Lett. 115 010402 [18] Handchen V, Eberle T, Steinlechner S, Samblowski A, Franz T,Werner R F and Schnabel R 2012 Nat. Photonics 6 596 [19] Qin Z, Deng X, Tian C, Wang M, Su X, Xie C and Peng K 2017 Phys. Rev. A 95 052114 [20] Wang N, Wang M, Tian C, Deng X and Su X 2023 Laser Photon. Rev. 18 2300653 [21] Rosales-Zárate L, Teh R, Kiesewetter S, Brolis A, Ng K and Reid M 2015 J. Opt. Soc. Am. B 32 A82 [22] Deng X, Liu Y,Wang M, Su X and Peng K 2021 npj Quantum Inf. 7 65 [23] Wang F, Wang C, Shen K and Hu X 2022 Opt. Express 30 15830 [24] Liu Y, Zheng K, Kang H, Han D, Wang M, Zhang L, Su X and Peng K 2022 npj Quantum Inf. 8 38 [25] Wang Y, Hao Z Y, Li J K, Liu Z H, Sun K, Xu J S, Li C F and Guo G C 2023 Phys. Rev. Lett. 130 200202 [26] Zhang Q X, Fang X X and Lu H 2024 Photon. Res. 12 552 [27] González-Raya T, Pirandola S and Sanz M 2024 Commun. Phys. 7 126 [28] Mehrabankar S, Mahmoudi P, Abbasnezhad F, Afshar D and Isar A 2024 Quantum Inf. Process. 23 343 [29] Białynicki-Birula I and Mycielski J 1975 Commun. Math. Phys. 44 129 [30] Walborn S, Salles A, Gomes R, Toscano F and Ribeiro P S 2011 Phys. Rev. Lett. 106 130402 [31] Wolf M M, Giedke G and Cirac J I 2006 Phys. Rev. Lett. 96 080502 [32] Lee C W, Ji S W and Nha H 2013 J. Opt. Soc. Am. B 30 2483 [33] Chowdhury P, Pramanik T, Majumdar A S and Agarwal G S 2014 Phys. Rev. A 89 012104 [34] Da C and Fan H Y 2019 Chin. J. Phys. 62 1 [35] Gardiner CWand Zoller P 2000 Quantum Noise (New York: Springer) [36] Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404 [37] Kogias I, Lee A R, Ragy S and Adesso G 2015 Phys. Rev. Lett. 114 060403 [38] Jevtic S, Hall M J, Anderson M R, Zwierz M and Wiseman H M 2015 J. Opt. Soc. Am. B 32 A40 [39] Poon P S Y and Law C K 2007 Phys. Rev. A 76 012333 [40] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722 [41] Serafini A, Illuminati F, Paris M G A and De Siena S 2004 Phys. Rev. A 69 022318 [42] Chen F and Fan H 2012 Sci. China Phys. Mech. Astron. 55 2076 [43] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 [44] Lütkenhaus N, Cirac J I and Zoller P 1998 Phys. Rev. A 57 548 [45] Paris M G A, Illuminati F, Serafini A and De Siena S 2003 Phys. Rev. A 68 012314 [46] Kim M S and Imoto N 1995 Phys. Rev. A 52 2401 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|