Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024101    DOI: 10.1088/1674-1056/adf69c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Inverse design of 3D integrated high-efficiency grating couplers using deep learning

Yu Wang(王玉)1,2, Yue Wang(王越)2, Guohui Yang(杨国辉)3, Kuang Zhang(张狂)3, Xing Yang(杨星)4,5, Chunhui Wang(王春晖)2,†, and Yu Zhang(张雨)4,5,‡
1 The College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China;
2 National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China;
3 The School of Electronic and Information Engineering, Harbin Institute of Technology, Harbin 150001, China;
4 The State Key Laboratory of Pulsed Power Laser Technology, College of Electronic Engineering, National University of Defense Technology, Changsha 410073, China;
5 Jianghuai Advance Technology Center, Hefei 230037, China
Abstract  In recent years, the use of deep learning to replace traditional numerical methods for electromagnetic propagation has shown tremendous potential in the rapid design of photonic devices. However, most research on deep learning has focused on single-layer grating couplers, and the accuracy of multi-layer grating couplers has not yet reached a high level. This paper proposes and demonstrates a novel deep learning network-assisted strategy for inverse design. The network model is based on a multi-layer perceptron (MLP) and incorporates convolutional neural networks (CNNs) and transformers. Through the stacking of multiple layers, it achieves a high-precision design for both multi-layer and single-layer raster couplers with various functionalities. The deep learning network exhibits exceptionally high predictive accuracy, with an average absolute error across the full wavelength range of 1300-1700 nm being only 0.17%, and an even lower predictive absolute error below 0.09% at the specific wavelength of 1550 nm. By combining the deep learning network with the genetic algorithm, we can efficiently design grating couplers that perform different functions. Simulation results indicate that the designed single-wavelength grating couplers achieve coupling efficiencies exceeding 80% at central wavelengths of 1550 nm and 1310 nm. The performance of designed dual-wavelength and broadband grating couplers also reaches high industry standards. Furthermore, the network structure and inverse design method are highly scalable and can be applied not only to multi-layer grating couplers but also directly to the prediction and design of single-layer grating couplers, providing a new perspective for the innovative development of photonic devices.
Keywords:  deep learning      inverse design      grating couplers      photonic devices  
Received:  13 April 2025      Revised:  26 June 2025      Accepted manuscript online:  01 August 2025
PACS:  41.85.-p (Beam optics)  
  42.25.-p (Wave optics)  
  84.71.Mn (Superconducting wires, fibers, and tapes)  
Fund: This study was sponsored by the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 62027823) and the National Natural Science Foundation of China (Grant No. 61775048).
Corresponding Authors:  Chunhui Wang, Yu Zhang     E-mail:  wangch_hit@163.com;zhangyu24d@nudt.edu.cn

Cite this article: 

Yu Wang(王玉), Yue Wang(王越), Guohui Yang(杨国辉), Kuang Zhang(张狂), Xing Yang(杨星), Chunhui Wang(王春晖), and Yu Zhang(张雨) Inverse design of 3D integrated high-efficiency grating couplers using deep learning 2026 Chin. Phys. B 35 024101

[1] Blumenthal D J, Heideman R, Geuzebroek D, Leinse A and Roeloffzen C 2018 Proc. IEEE 106 2209
[2] Rahim A, Ryckeboer E, Subramanian A Z, et al. 2017 J. Light. Technol. 35 639
[3] Shi Y, Zhang Y, Wan Y, Yu Y, Zhang Y, Hu X, Xiao X, Xu H, Zhang L and Pan B 2022 Photonics Res. 10 A106
[4] Siew S Y, Li B, Gao F, et al. 2021 J. Light. Technol. 39 4374
[5] Sun C, Yang L, Li B, Shi W, Wang H, Chen Z, Nie X, Deng S, Ding N and Zhang A 2021 Opt. Lett. 46 5699
[6] Xiang C, Jin W and Bowers J E 2022 Photonics Res. 10 A82
[7] Boes A, Corcoran B, Chang L, Bowers J and Mitchell A 2018 Photonics Rev. 12 1700256
[8] Churaev M, Wang R N, Riedhauser A, et al. 2023 Nat. Commun. 14 3499
[9] Xiang C, Guo J, Jin W, et al. 2021 Nat. Commun. 12 6650
[10] Goyvaerts J, Kumari S, Uvin S, Zhang J, Baets R, Gocalinska A, Pelucchi E, Corbett B and Roelkens G 2020 Opt. Express 28 21275
[11] Jacob B, Camarneiro F, Borme J, Bondarchuk O, Nieder J B and Romeira B 2022 ACS Appl. Electron. Mater. 4 3399
[12] Subramanian A Z, Ryckeboer E, Dhakal A, et al. 2015 Photonics Res. 3 B47
[13] Scheerlinck S, Schrauwen J, Laere F V, Taillaert D, Thourhout D V and Baets R 2007 Opt. Express 15 9625
[14] Zhang J, Yang J, Lu H, Wu W, Huang J and Chang S 2015 Chin. Opt. Lett. 13 091301
[15] Papes M, Cheben P, Benedikovic D, et al. 2016 Opt. Express 24 5026
[16] Maire G, Vivien L, Sattler G, et al. 2008 Opt. Express 16 328
[17] Wang P, Luo G, Xu Y, et al. 2020 Photonics Res. 8 912
[18] Mak J C, Wilmart Q, Olivier S, Menezo S and Poon J K 2018 Opt. Express 26 13656
[19] Yoon J, Kim J Y, Kim J, Yoon H, Neeli B, Park H H and Kurt H 2023 Photonics Res. 11 897
[20] Cheng L, Mao S, Li Z, Han Y and Fu H 2020 Micromachines 11 666
[21] Xie Y, Nie M and Huang S W 2024 Appl. Phys. Lett. 124 051108
[22] Ma W, Liu Z, Kudyshev Z A, Boltasseva A, Cai W and Liu Y 2021 Nat. Photonics 15 77
[23] Mourgias-Alexandris G, Moralis-Pegios M, Tsakyridis A, et al. 2022 Nat. Commun. 13 5572
[24] Hong L, Liu Y, Xu M and Deng W 2025 Chin. Phys. B 34 018705
[25] Cui J, Li Y, Zhao C and Zheng W 2023 Chin. Phys. B 32 096101
[26] Tu X, Xie W, Chen Z, Ge M F, Huang T, Song C and Fu H 2021 J. Light. Technol. 39 2790
[27] Adibnia E, Ghadrdan M and Mansouri-Birjandi M A 2025 Opt. Laser Technol. 181 111766
[28] Hooten S, Beausoleil R G and Van Vaerenbergh T 2021 Nanophotonics 10 3843
[29] Mengu D, Sakib RahmanMS, Luo Y, Li J, Kulce O and Ozcan A 2022 Adv. Opt. Photonics 14 209
[30] Li Y, Zhang Y, Wang Y, et al. 2024 Adv. Opt. Mater. 12 2302657
[31] Gostimirovic D andWinnie N Y 2018 IEEE J. Sel. Top. Quantum Electron. 25 1
[32] Zeng Z, Huang Q and He S 2023 Prog. Electromagn. Res. M 119 143
[33] Chen X, Lin D, Zhang T, Zhao Y, Liu H, Cui Y, Hou C, He J and Liang S 2023 Appl. Opt. 62 2924
[34] Kang S, Gao F, Yu X, Bo F, Zhang G and Xu J 2023 JOSA B 40 D21
[35] Augenstein Y, Repan T and Rockstuhl C 2023 ACS Photonics 10 1547
[36] Cheng L, Mao S, Tu X and Fu H Y 2021 J. Light. Technol. 39 5902
[37] Hammond A M, Slaby J B, ProbstMJ and Ralph S E 2022 Opt Express 30 31058
[38] Dai M, Ma L, Xu Y, Lu M, Liu X and Chen Y 2015 Opt Express 23 1691
[1] Predicting the synthesizability of inorganic crystals by bridging crystal graphs and phonon dynamics
Mei Ma(马梅), Wei Ma(马薇), Le Gao(高乐), Zong-Guo Wang(王宗国), and Hao Liu(刘昊). Chin. Phys. B, 2026, 35(1): 016101.
[2] Image-free single-pixel semantic segmentation for complex scene based on multi-scale U-Net
Tengfei Liu(刘腾飞), Yanfeng Bai(白艳锋), Jianxia Chen(陈健霞), Jintao Zhai(翟锦涛), Siqing Xiang(向思卿), Xianwei Huang(黄贤伟), and Xiquan Fu(傅喜泉). Chin. Phys. B, 2026, 35(1): 014202.
[3] RLsite: Integrating 3D-CNN and BiLSTM for RNA-ligand binding site prediction
Yan Zou(邹艳), Lang Yang(杨浪), Yanhui Liu(刘艳辉), and Yuyu Feng(冯玉宇). Chin. Phys. B, 2025, 34(8): 088709.
[4] Deep learning-enabled inverse design of polarization-selective structural color based on coding metasurface
Haolin Yang(杨昊霖), Bo Ni(倪波), Junhong Guo(郭俊宏), Hua Zhou(周华), and Jianhua Chang(常建华). Chin. Phys. B, 2025, 34(5): 050702.
[5] Trajectory tracking on the optimal path of two-dimensional quadratic barrier escaping
Zengxuan Zhao(赵曾轩), Xiuying Zhang(张秀颖), Pengchen Zhao(赵鹏琛), Chunyang Wang(王春阳), Chunlei Xia(夏春雷), Mushtaq Rana Imran, and Joelous Malamula Nyasulu. Chin. Phys. B, 2025, 34(5): 050205.
[6] Learning complex nonlinear physical systems using wavelet neural operators
Yanan Guo(郭亚楠), Xiaoqun Cao(曹小群), Hongze Leng(冷洪泽), and Junqiang Song(宋君强). Chin. Phys. B, 2025, 34(3): 034702.
[7] Nonreciprocal unidirectional and circular transmission in microcavity exciton polaritons
Hong-Ping Xu(徐红萍), Run-Run Yang(杨润润), Ji-Ming Gao(高吉明), and Zi-Fa Yu(鱼自发). Chin. Phys. B, 2025, 34(11): 114202.
[8] Accurate prediction of essential proteins using ensemble machine learning
Dezhi Lu(鲁德志), Hao Wu(吴淏), Yutong Hou(侯俞彤), Yuncheng Wu(吴云成), Yuanyuan Liu(刘媛媛), and Jinwu Wang(王金武). Chin. Phys. B, 2025, 34(1): 018901.
[9] A large language model-powered literature review for high-angle annular dark field imaging
Wenhao Yuan(袁文浩), Cheng Peng(彭程), and Qian He(何迁). Chin. Phys. B, 2024, 33(9): 098703.
[10] High-quality ghost imaging based on undersampled natural-order Hadamard source
Kang Liu(刘炕), Cheng Zhou(周成), Jipeng Huang(黄继鹏), Hongwu Qin(秦宏伍), Xuan Liu(刘轩), Xinwei Li(李鑫伟), and Lijun Song(宋立军). Chin. Phys. B, 2024, 33(9): 094204.
[11] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
[12] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[13] Robust optical mode converter based on topological waveguide arrays
Yu-Xiang Xu(徐宇翔), Wen-Jian Tang(唐文剑), Li-Wei Jiang(姜力炜), De-Xing Wu(吴德兴), Heng Wang(王恒), Bing-Cong Xu(许冰聪), and Lin Chen(陈林). Chin. Phys. B, 2024, 33(6): 060306.
[14] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[15] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
No Suggested Reading articles found!