Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027505    DOI: 10.1088/1674-1056/adf6a6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain energy enhanced room-temperature magnetocaloric effect in Mn5Ge3

Xiaohe Liu(刘潇贺)1,2, Ping Song(宋平)1,2,†, Sen Yao(姚森)1,2, Yuhao Lei(雷雨豪)1,2, Ling Yang(杨玲)1,2, Shenxiang Du(杜深祥)1,2, Yiran Deng(邓贻然)1,2, and Defeng Guo(郭得峰)1,2
1 Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China;
2 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  Large magnetic entropy change ($\Delta S_{\rm M}$) can realize a prominent heat transformation under the magnetic field and directly strengthen the efficacy of the magnetocaloric effect, which provides a pioneering environmentally friendly solid-state strategy to improve refrigeration capacities and efficiencies. The second-order magnetic transition (SOMT) materials have broader $\Delta S_{\rm M}$ peaks without thermal hysteresis, making them highly attractive in magnetic refrigeration, especially in the room temperature range. Here, we report a significant enhancement of $\Delta S_{\rm M}$ at room temperature in single-crystal Mn$_{5}$Ge$_{3}$. In this SOMT system, we realize a 60 % improvement of $-\Delta S^{\max}_{\rm M} $ from 3.5 J/kg$\cdot $K to 5.6 J/kg$\cdot $K at $T = 300$ K. This considerable enhancement of $\Delta S_{\rm M}$ is achieved by intentionally introducing strain energy through high-pressure constrained deformation. Both experimental results and Monte Carlo simulations demonstrate that the enhancement of $\Delta S_{\rm M}$ originates from the microscopic strain and lattice deformation induced by strain energy after deformation. This strain energy will reconstruct the energy landscape of this ferromagnetic system and enhance magnetization, resulting in a giant intensity of magnetocaloric responses. Our findings provide an approach to increase magnetic entropy change and may give fresh ideas for exploring advanced magnetocaloric materials.
Keywords:  magnetocaloric effect      magnetic entropy change      second-order magnetic transition      strain energy      deformation  
Received:  19 May 2025      Revised:  14 July 2025      Accepted manuscript online:  01 August 2025
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  62.20.F- (Deformation and plasticity)  
  75.47.Np (Metals and alloys)  
Fund: The authors would like to thank Dr. Jie Ren for his assistance in the Monte Carlo simulations. Project supported by the National Key Research and Decelopment Program of China (Grant No. 2021YFB3500302), the National Natural Science Foundation of China (Grant Nos. U22A20116 and 52371200), and the Innovation Capability Improvement Project of Hebei Province, China (Grant No. 22567605H).

Cite this article: 

Xiaohe Liu(刘潇贺), Ping Song(宋平), Sen Yao(姚森), Yuhao Lei(雷雨豪), Ling Yang(杨玲), Shenxiang Du(杜深祥), Yiran Deng(邓贻然), and Defeng Guo(郭得峰) Strain energy enhanced room-temperature magnetocaloric effect in Mn5Ge3 2026 Chin. Phys. B 35 027505

[1] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[2] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Xiang J S, Zhang C D, Gao Y, Schmidt W, Schmalzl K, Wang C W, Li B, Xi N, Liu X Y, Jin H, Li G, Shen J, Chen Z Y, Qi Y, Wan Y, Jin W T, Li W, Sun P J and Su G 2024 Nature 625 270
[4] Levinsky J J B, Beckmann B, Gottschall T, Koch D, Ahmadi M, Gutfleisch O and Blake G R 2024 Nat. Commun. 15 8559
[5] Brown G V 1976 J. Appl. Phys. 47 3673
[6] Franco V, Blazquez J S, Ingale B and Conde A 2012 Annu. Rev. Mater. Res. 42 305
[7] Gottschall T, Skokov K P, Fries M, Taubel A, Radulov I, Scheibel F, Benke D, Riegg S and Gutfleisch O 2019 Adv. Eng. Mater. 9 1901322
[8] Zarkevich N A and Zverev V I 2020 Crystals 10 815
[9] Law J Y, Franco V, Moreno-Ramírez L M, Conde A, Karpenkov D Y, Radulov I, Skokov K P and Gutfleisch O 2018 Nat. Commun. 9 2680
[10] Law J Y, Moreno-Ramírez L M, Díaz-García A and Franco V 2023 J. Appl. Phys. 133 040903
[11] Singh S, Caron L, D’Souza S W, Fichtner T, Porcari G, Fabbrici S, Shekhar C, Chadov S, Solzi M and Felser C 2016 Adv. Mater. 28 3321
[12] Wang S B, Fan C Z and Liu D M 2021 ACS Appl. Mater. Inter. 13 33237
[13] Li L W, Nishimura K, Hutchison W D, Qian Z H, Huo D X and NamiKi T 2012 Appl. Phys. Lett. 100 152403
[14] Xi S B, Lu W J and Sun Y P 2012 J. Appl. Phys. 111 063922
[15] Belyea D D, Lucas M S, Michel E, Horwath J and Miller C W 2015 Sci. Rep. 5 15755
[16] Hao J Z, Hu F X, Zhou H B, Liang W H, Yu Z B, Shen F R, Gao Y H, Qiao K M, Li J, Zhang C, Wang B J, Wang J, He J, Sun J R and Shen B G 2020 Scripta Mater. 186 84
[17] Liu J 2014 Chin. Phys. B 23 047503
[18] Yin H, Law J Y, Huang Y J, Shen H X, Jiang S D, Guo S, Franco V and Sun J F 2022 Sci. China Mater. 65 1134
[19] Zhang X Y, Hua Y X and Li X H 2025 Sci. China Phys. Mech. Astron. 68 247511
[20] Hua Y X, Li X H, Li J X, Luo X, Li Y Q, Qin W Y, Zhang L Q, Xiao J W, Xia W X, Song P, Yue M, Zhang H T and Zhang X Y 2024 Science 385 634
[21] Li X H, Lou L, Song W P, Huang G W, Hou F C, Zhang Q, Zhang H T, Xiao J W, Wen B and Zhang X Y 2017 Adv. Mater. 29 1606430
[22] Lou L, Li Y Q, Li X H, Li H L, Li W, Hua Y X, Xia W X, Zhao Z H, Zhang H T, Yue M and Zhang X Y 2021 Adv. Mater. 33 2102800
[23] Li X H, Lou L, Song W P, Zhang Q, Huang G W, Hua Y X, Zhang H T, Xiao J W, Wen B and Zhang X Y 2017 Nano Lett. 17 2985
[24] Li W, Li L L, Nan Y, Li X H, Zhang X Y, Gunderov D V, Stolyarov V V and Popov A G 2007 Appl. Phys. Lett. 91 062509
[25] Liu Y G, Xu L, Wang Q F, Li W and Zhang X Y 2009 Appl. Phys. Lett. 94 172502
[26] Li H L, Lou L, Hou F C, Guo D F, Li W, Li X H, Gunderov D V, Sato K and Zhang X Y 2013 Appl. Phys. Lett. 103 142406
[27] Zhang X Y 2020 Heterostructures: new opportunities for functional materials Mater. Res. Lett. 8 49
[28] Song P, Yao S, Zhang B X, Jiang B, Deng S S, Guo D F, Ma L and Hou D L 2022 Appl. Phys. Lett. 120 192401
[29] Huang G W, Li X H, Lou L, Hua Y X, Zhu G J, Li M, Zhang H T, Xiao J W, Wen B, Yue M and Zhang X Y 2018 Small 14 1800619
[30] Picozzi S, Continenza A and Freeman A J 2004 Phys. Rev. B 70 235205
[31] Songlin, Dagula, Tegus O, Bruck E, De Boer F R and Buschow K H J 2002 J. Alloys Compd. 337 269
[32] Maraytta N, Voigt J, Salazar Mejía C, Friese K, Skourski Y, Perßon J, Salman S M and Bruckel Th 2020 J. Appl. Phys. 128 103903
[33] Lalita, Rathi A, Pardeep, Verma A K, Gahtori B, Gautam A, Pant R P, Babu P D and Basheed G A 2021 J. Alloys Compd. 876 159908
[34] Zhao M Y, Guo W, Wu X, Ma L, Song P, Li G K, Zhen C M, Zhao D W and Hou D L 2023 Mater. Horiz. 10 4597
[35] Selinger J V 2016 Introduction to the theory of soft matter: From ideal gases to liquid crystals (Cambridge: Springer International Publishing) pp. 7-23
[36] Biju V, Sugathan N, Vrinda V and Salini S L 2008 J. Marer. Sci. 43 1175
[37] Yang T H, He W, Chen F K and He C Y 2022 J Magn Magn Mater. 559 169539
[38] Gschneidner Jr K A and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387
[39] Zhao F Q, Dagula W, Tegus O and Buschow K H J 2006 J. Alloys Compd. 416 43
[40] Zheng T F, Shi Y G, Fan J Y, Shi D N, Tang S L, Lv L Y and Zhong W 2013 J. Appl. Phys. 113 17
[41] Gschneidner K A and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387
[42] Franco V, Blazquez J S and Conde A 2006 F Appl. Phys. Lett. 89 222512
[43] Lalita, Babu P D, Pardeep and Basheed G A 2023 Alloy J. Appl. Phys. 134 173903
[44] Ghediri A, Chiba Y and Tlemçani A 2022 Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities (Cambridge: Springer International Publishing) pp. 847-856
[1] Magnetic refrigerants for ultralow temperatures: A mini-review
Ziyu W. Yang(杨子煜), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Ciyu Qin(秦慈宇), Maocai Pi(皮茂材), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Yu-Jia Zeng(曾昱嘉), and Youwen Long(龙有文). Chin. Phys. B, 2026, 35(2): 020701.
[2] Microstructural evolution and magnetocaloric properties of off-stoichiometric La1.2Fe11.6Si1.4 alloys with interstitial C atoms
Huiyan Zhang(张慧燕), Ye Zhu(朱叶), Fucheng Zhu(朱福成), Yang Xu(许旸), Yunbo Chen(陈云博), Hailing Li(李海玲), Weihua Gu(顾未华), Zhiyuan Liu(刘志愿), Weihuo Li(李维火), and Ailin Xia(夏爱林). Chin. Phys. B, 2025, 34(8): 088202.
[3] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[4] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
[5] Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties
Tianchang Xue(薛天畅), Ping Wei(魏平), Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞). Chin. Phys. B, 2024, 33(8): 087403.
[6] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[7] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[8] Higher-dimensional Chen—Lee—Liu equation and asymmetric peakon soliton
Qiao-Hong Han(韩巧红) and Man Jia(贾曼). Chin. Phys. B, 2024, 33(4): 040202.
[9] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[10] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[11] Design and fabrication of compound varifocal lens driven by polydimethylsiloxane film elastic deformation
Wen-Hao Miao(缪文浩), Ze-Feng Han(韩泽峰), Rui Zhao(赵瑞), Zhong-Cheng Liang(梁忠诚), Song-Feng Kou(寇松峰), and Rong-Qing Xu(徐荣青). Chin. Phys. B, 2024, 33(2): 024103.
[12] Tuning the magnetocaloric and structural properties of La0.67Sr0.28Pr0.05Mn1-xCoxO3 refrigeration materials
Changji Xu(徐长吉), Xinyu Jiang(姜心雨), Zhengguang Zou(邹正光), Zhuojia Xie(谢卓家), Weijian Zhang(张伟建), and Min Feng(冯敏). Chin. Phys. B, 2024, 33(12): 127501.
[13] A molecular dynamics study on mechanical performance and deformation mechanisms in nanotwinned NiCo-based alloys with nano-precipitates under high temperatures
Zihao Yu(于子皓), Hongyu Wang(王鸿宇), Ligang Sun(孙李刚), Zhihui Li(李志辉), and Linli Zhu(朱林利). Chin. Phys. B, 2024, 33(11): 116201.
[14] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[15] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
No Suggested Reading articles found!