Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 028801    DOI: 10.1088/1674-1056/ae156b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Band engineering and recombination mechanisms in lead-free perovskite solar cells

Wei Liu(刘维)1, Tingxue Zhou(周庭雪)1, Liang Chu(楚亮)2,†, and Xing'ao Li(李兴鳌)1,‡
1 New Energy Technology Engineering Laboratory of Jiangsu Province & Institute of Advanced Materials & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Institute of Carbon Neutrality and New Energy & School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  All-inorganic lead-free perovskite solar cells have emerged as environmentally benign candidates; however, their device performance is still constrained by pronounced carrier recombination losses in the bulk and at interfaces. By combining energy band alignment analysis with detailed modeling of recombination mechanisms, a systematic strategy for optimizing hole transport layers is developed. The results reveal that a negative valence band offset produces a cliff-like interface, which facilitates hole extraction while also accounting for the observed variations in open-circuit voltage. Furthermore, short-circuit current losses are quantitatively attributed to different recombination pathways, modeled by incorporating radiative, Shockley-Read-Hall, Auger, and interface recombination processes. This comprehensive approach not only clarifies the correlation between energy level alignment and recombination dynamics but also highlights the competing roles of band offset and interface defects in determining device performance. The optimized device architecture, based on Ge-based lead-free perovskites, achieves a power conversion efficiency of 25.1 %, with an open-circuit voltage of 1.29 V, a short-circuit current density of 22.5 mA$\cdot $cm$^{-2}$, and a fill factor of 86.3 %. These findings provide theoretical guidance for designing stable, high-performance, and environmentally friendly lead-free perovskite solar cells.
Keywords:  perovskite solar cells      lead-free      band engineering      recombination  
Received:  20 August 2025      Revised:  30 September 2025      Accepted manuscript online:  21 October 2025
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 52102165 and 62474056) and the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant Nos. NY221029 and NY222165).
Corresponding Authors:  Liang Chu, Xing'ao Li     E-mail:  chuliang@hdu.edu.cn;lxahbmy@126.com

Cite this article: 

Wei Liu(刘维), Tingxue Zhou(周庭雪), Liang Chu(楚亮), and Xing'ao Li(李兴鳌) Band engineering and recombination mechanisms in lead-free perovskite solar cells 2026 Chin. Phys. B 35 028801

[1] National Renewable Energy Labs (NREL), Best Research Cell Efficiencies Chart
[2] Chung I, Lee B, He J, Chang R P H and Kanatzidis M G 2012 Nature 485 486
[3] Singh S, Laxmi and Kabra D 2020 J. Phys. D: Appl. Phys. 53 503003
[4] Li J,Wang H, Chin X Y, Dewi H A, Vergeer K, Goh TW, Lim J M, Lew J H, Loh K P, Soci C, Sum T C, Bolink H J, Mathews N, Mhaisalkar S and Bruno A 2020 Joule 4 1035
[5] Chen J and Park N G 2019 Adv. Mater. 31 1803019
[6] Liu Y, Akin S, Pan L, Uchida R, Arora N, Milic J V, Hinderhofer A, Schreiber F, Uhl A R, Zakeeruddin S M, Hagfeldt A, Dar M I and Gratzel M 2019 Sci. Adv. 5 eaaw2543
[7] Aydin E, De Bastiani M and De Wolf S 2019 Adv. Mater. 31 1900428
[8] Lin S, Zhang B, Lv T Y, Zheng J C, Pan H, Chen H, Lin C, Li X and Zhou J 2021 ACS Omega 6 26689
[9] Liu D, Li Q, Jing H and Wu K 2019 RSC Adv. 9 3279
[10] LiuW, Huang X, Li Q, Yao Q, Zhang D, Zhou T, Li X and Chu L 2025 Sci. China Mater. 68 3737
[11] Li B, Di H, Chang B, Yin R, Fu L, Zhang Y N and Yin L 2021 Adv. Funct. Mater. 31 2007447
[12] Duan C, Zou F, Wen Q, Qin M, Li J, Chen C, Lu X, Ding L and Yan K 2023 Adv. Mater. 35 2300503
[13] Chen M, Ju M G, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y, Grimm R L, Pacifici D, Zeng X C, Zhou Y and Padture N P 2019 Nat. Commun. 10 1
[14] Ju M G, Dai J, Ma L and Zeng X C 2017 J. Am. Chem. Soc. 139 8038
[15] Jiang M and Tang J 2021 J. Opt. Soc. Am. B 38 3754
[16] Shum K, Chen Z, Qureshi J, Yu C, Wang J J, Pfenninger W, Vockic N, Midgley J and Kenney J T 2010 Appl. Phys. Lett. 96 221903
[17] Salem M S, Shaker A, Othman M S, Al-Bagawia A H, Fedawy M and Aleid G M 2022 Opt. Mater. 123 111880
[18] Sobayel K, Akhtaruzzaman M, Rahman K S, FerdaousMT, Al-Mutairi Z A, Alharbi H F, Alharthi N H, Karim M R, Hasmady S and Amin N 2019 Results Phys. 12 1097
[19] Sarkar J, Talukdar A, Debnath P and Chatterjee S 2023 J. Comput. Electron. 22 1075
[20] Dubey K C, Srivastava A, Wadhwani N and Shukla R K 2025 J. Electron. Mater. 54 1851
[21] Burgelman M, Nollet P and Degrave S 2000 Thin Solid Films 361 527
[22] Zhou T, Huang X, Yao R, Zhang D, Liu W and Li X 2025 Adv. Theor. Simul. 8 2401064
[23] Wu B, Zhou Y, Xing G, Xu Q, Garces H F, Solanki A, Goh T W, Padture N P and Sum T C 2017 Adv. Funct. Mater. 27 1604818
[24] Tvingstedt K, Gil-Escrig Ln, Momblona C, Rieder P, Kiermasch D, Sessolo M, Baumann A, Bolink H J and Dyakonov V 2017 ACS Energy Lett. 2 424
[25] Krishnamoorthy T, Ding H, Yan C, Leong WL, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N and Mhaisalkar S G 2015 J. Mater. Chem. A 3 23829
[26] Ming W, Shi H and Du M H 2016 J. Mater. Chem. A 4 13852
[27] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G and Mathews N 2014 Adv. Mater. 26 7122
[28] Johnston M B and Herz L M 2016 Acc. Chem. Res. 49 146
[29] Stolterfoht M, Grischek M, Caprioglio P,Wolff C M, Gutierrez-Partida E, Pena-Camargo F, Rothhardt D, Zhang S, Raoufi M, Wolansky J, Abdi-Jalebi M, Stranks S D, Albrecht S, Kirchartz T and Neher D 2020 Adv. Mater. 32 2000080
[30] Sarker S, Islam M T, Rauf A, Al Jame H, Jani M R, Ahsan S, Islam M S, Nishat S S, Shorowordi K M and Ahmed S 2021 Sol. Energy 225 471
[31] Braly I L, deQuilettes DW, Pazos-Outon L M, Burke S, ZifferME and Ginger D S 2018 Nat. Photonics 12 355
[32] Fu J, Xu Q, Han G, Wu B, Huan C A, Leek M L and Sum T C 2017 Nat. Commun. 8 1300
[33] Sze S M and Ng K K 2007 Physics of Semiconductor Devices 3rd Ed. (New York: Wiley) Chapter 2, p. 43
[34] Huang T, Zhu R and Luo D 2024 Chin. Phys. Lett. 41 098501
[35] Shen J X, Zhang X, Das S, Kioupakis E and Van de Walle C G 2018 Adv. Energy Mater. 8 1801027
[36] Zheng Y, Li Y, Zhuang R, Wu X, Tian C, Sun A, Chen C, Guo Y, Hua Y, Meng K, Wu K and Chen C C 2024 Energ. Environ. Sci. 17 1153
[37] Ono L K, Liu S and Qi Y 2020 Angew. Chem. Int. Ed. 59 6676
[38] Hall R N 1952 Phys. Rev. 87 387
[39] Zhang X, Shen J X, Wang W and Van de Walle C G 2018 ACS Energy Lett. 3 2329
[40] Li B, Li J, Yang G, Wu M and Yu J 2023 Chin. Phys. B 32 107801
[41] Wang X, Faizan M, Zhou K, Wang X, Fu Y and Zhang L 2024 Chin. Phys. B 33 107303
[1] High-performance KNN-based piezoelectric ceramics for buzzer application
Cheng Xiong(熊城), Bosen Li(李博森), Zhongxin Liao(廖忠新), Yan Qiu(邱䶮), and Daqiang Gao(高大强). Chin. Phys. B, 2025, 34(4): 047701.
[2] SolarDesign: An online photovoltaic device simulation and design platform
Wei E. I. Sha(沙威), Xiaoyu Wang(王啸宇), Wenchao Chen(陈文超), Yuhao Fu(付钰豪), Lijun Zhang(张立军), Liang Tian(田亮), Minshen Lin(林敏慎), Shudi Jiao(焦书迪), Ting Xu(徐婷), Tiange Sun(孙天歌), and Dongxue Liu(刘冬雪). Chin. Phys. B, 2025, 34(1): 018801.
[3] Modeling the performance of perovskite solar cells with inserting porous insulating alumina nanoplates
Zhaoyao Pan(潘赵耀), Jinpeng Yang(杨金彭), and Xiaoshuang Shen(沈小双). Chin. Phys. B, 2024, 33(3): 038501.
[4] Ultrafast carrier dynamics in GeSn thin film based on time-resolved terahertz spectroscopy
Panpan Huang(黄盼盼), Youlu Zhang(张有禄), Kai Hu(胡凯), Jingbo Qi(齐静波), Dainan Zhang(张岱南), and Liang Cheng(程亮). Chin. Phys. B, 2024, 33(1): 017201.
[5] Absolute dielectronic recombination rate coefficients of highly charged ions at the storage ring CSRm and CSRe
Zhongkui Huang(黄忠魁), Shuxing Wang(汪书兴), Weiqiang Wen(汶伟强), Hanbing Wang(汪寒冰), Wanlu Ma(马万路), Chongyang Chen(陈重阳), Chunyu Zhang(张春雨), Dongyang Chen(陈冬阳), Houke Huang(黄厚科), Lin Shao(邵林), Xin Liu(刘鑫), Xiaopeng Zhou(周晓鹏), Lijun Mao(冒立军), Jie Li(李杰), Xiaoming Ma(马晓明), Meitang Tang(汤梅堂), Jiancheng Yang(杨建成), Youjin Yuan(原有进), Shaofeng Zhang(张少锋), Linfan Zhu(朱林繁), and Xinwen Ma(马新文). Chin. Phys. B, 2023, 32(7): 073401.
[6] Back interface passivation for ultrathin Cu(In,Ga)Se2 solar cells with Schottky back contact: A trade-off of electrical effects
Ye Tu(涂野), Yong Li(李勇), and Guanchao Yin(殷官超). Chin. Phys. B, 2023, 32(6): 068101.
[7] Improving efficiency of n-i-p perovskite solar cells enabled by 3-carboxyphenylboronic acid additive
Bin-Jie Li(李斌杰), Jia-Wen Li(李嘉文), Gen-Jie Yang(杨根杰), Meng-Ge Wu(吴梦鸽), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2023, 32(10): 107801.
[8] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[9] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[10] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[11] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[12] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[13] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[14] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[15] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
No Suggested Reading articles found!