|
|
|
Hall anomalies in the centrosymmetric triangular-lattice antiferromagnet GdGa2 |
| Sidi Wang(王思迪), Jiyuan Li(李纪源), Yuhao Wang(王宇豪), Keqi Xia(夏克奇), Jing Meng(孟婧), Bocheng Yu(余博丞), Yiqian Hu(胡艺骞), Zheng Li(李峥), Hui Zhang(张慧), Jingzhong Luo(罗晶中), Dongmei Jiang(蒋冬梅), Qingfeng Zhan(詹清峰), Tian Shang(商恬)†, and Yang Xu(徐杨)‡ |
| Key Laboratory of Polar Materials and Devices (MOE), School of Physics, East China Normal University, Shanghai 200241, China |
|
|
|
|
Abstract Skyrmions emerging in centrosymmetric materials have garnered significant interest. GdGa$_{2}$, a recently discovered centrosymmetric antiferromagnet with a triangular lattice, has been proposed to host possible Néel-type skyrmions exhibiting an extremely short magnetic periodicity in the so-called A-phases. Here, we report the magnetic and magnetotransport properties of GdGa$_{2}$ single crystals. Hall anomalies beyond magnetization scaling emerge at intermediate magnetic fields, coinciding with the skyrmion-hosting A-phases. The small amplitude of the Hall anomalies may be attributed to the short period of the spin textures. In contrast, the transport behavior of TbGa$_{2}$ single crystals is well described by a conventional two-band model. This discrepancy likely arises from distinct Ruderman-Kittel-Kasuya-Yosida interaction strengths and/or magnetic anisotropy between the two crystals. Our results establish GdGa$_{2}$ as a new material platform for the exploration of skyrmion physics in centrosymmetric systems.
|
Received: 14 September 2025
Revised: 22 November 2025
Accepted manuscript online: 02 December 2025
|
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
| |
12.39.Dc
|
(Skyrmions)
|
| |
71.20.Eh
|
(Rare earth metals and alloys)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 12274125, 12574117, 12374105, and 12174103). |
Corresponding Authors:
Tian Shang, Yang Xu
E-mail: tshang@phy.ecnu.edu.cn;yxu@phy.ecnu.edu.cn
|
Cite this article:
Sidi Wang(王思迪), Jiyuan Li(李纪源), Yuhao Wang(王宇豪), Keqi Xia(夏克奇), Jing Meng(孟婧), Bocheng Yu(余博丞), Yiqian Hu(胡艺骞), Zheng Li(李峥), Hui Zhang(张慧), Jingzhong Luo(罗晶中), Dongmei Jiang(蒋冬梅), Qingfeng Zhan(詹清峰), Tian Shang(商恬), and Yang Xu(徐杨) Hall anomalies in the centrosymmetric triangular-lattice antiferromagnet GdGa2 2026 Chin. Phys. B 35 027502
|
[1] Vojta M 2018 Rep. Prog. Phys. 81 064501 [2] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R and Senthil T 2020 Science 367 eaay0668 [3] Tokura Y and Kanazawa N 2021 Chem. Rev. 121 2857 [4] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031 [5] Zhang Y S, Tang J, Wu Y D, Shi M, Xu X T, Wang S G, Tian M L and Du H F 2024 Nat. Commun. 15 3391 [6] Tang J,Wu Y D, Jiang J L, Kong L Y, LiuWY, LiuW,Wang S G, Tian M L and Du H F 2023 Sci. Bull. 68 2919 [7] Tang J, Wu Y D, Wang W W, Kong L Y, Lv B Y, Wei W S, Zang J D, Tian M L and Du H F 2021 Nat. Nanotechnol. 16 1086 [8] Wei W S, He Z D, Qu Z and Du H F 2021 Rare Met. 40 3076 [9] Bak P and Jensen M H 1980 J. Phys. C: Solid State Phys. 13 L881 [10] Wilhelm H, Baenitz M, Schmidt M, Rößler U K, Leonov A A and Bogdanov A N 2011 Phys. Rev. Lett. 107 127203 [11] Sutcliffe P 2017 Phys. Rev. Lett. 118 247203 [12] Takagi R, Matsuyama N, Ukleev V, Yu L, White J S, Francoual S, Mardegan J R L, Hayami S, Saito H, Kaneko K, Ohishi K, O nuki Y, Arima T, Tokura Y, Nakajima T and Seki S 2022 Nat. Commun. 13 1472 [13] Shang T, Xu Y, Gao S, Yang R, Shiroka T and Shi M 2024 J. Phys.: Condens. Matter 37 013002 [14] Shang T, Xu Y, Gawryluk D J, Ma J Z, Shiroka T, Shi M and Pomjakushina E 2021 Phys. Rev. B 103 L020405 [15] Zhang H, Zhu X Y, Xu Y, Gawryluk D J, XieW, Ju S L, Shi M, Shiroka T, Zhan Q F, Pomjakushina E and Shang T 2022 J. Phys.: Condens. Matter 34 034005 [16] Khanh N D, Nakajima T, Yu X, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L, Nakajima K, Takagi R, Arima T, Tokura Y and Seki S 2020 Nat. Nanotechnol. 15 444 [17] Yasui Y, Butler C J, Khanh N D, Hayami S, Nomoto T, Hanaguri T, Motome Y, Arita R, Arima T, Tokura Y and Seki S 2020 Nat. Commun. 11 5925 [18] Hirschberger M, Nakajima T, Gao S, Peng L, Kikkawa A, Kurumaji T, Kriener M, Yamasaki Y, Sagayama H, Nakao H, Ohishi K, Kakurai K, Taguchi Y, Yu X, Arima T and Tokura Y 2019 Nat. Commun. 10 5831 [19] Ogunbunmi M O, Nair H S and Strydom A M 2022 Crit. Rev. Solid State Mater. Sci. 48 480 [20] Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T and Tokura Y 2019 Science 365 914 [21] Paddison J A M, Rai B K, May A F, Calder S, Stone M B, Frontzek M D and Christianson A D 2022 Phys. Rev. Lett. 129 137202 [22] Hirschberger M, Hayami S and Tokura Y 2021 New J. Phys. 23 023039 [23] Kawamura H 2025 J. Phys.: Condens. Matter 37 183004 [24] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [25] Baral P R, Khanh N D, Gen M, Sagayama H, Nakao H, Arima T H, O nuki Y, Tokura Y and Hirschberger M 2025 J. Phys. Soc. Jpn. 94 024705 [26] Kurumaji T, Fang S, Ye L, Kitou S and Checkelsky J G 2024 Proc. Natl. Acad. Sci. 121 e2318411121 [27] Khatua J, Sana B, Zorko A, Gomilšek M, Sethupathi K, Rao M S R, Baenitz M, Schmidt B and Khuntia P 2023 Phys. Rep. 1041 1 [28] Ohara S, Sakamoto I, Aoki Y, Sato H, Oguro I, Sasaki T, Kido G and Maruno S 1996 Phys. B 223 379 [29] Hamasaki T, Yokoo T, Arai M, Ohara S and Sakamoto I 2004 J. Magn. Magn. Mater. 272 E465 [30] Oka H, Brovko O O, Corbetta M, Stepanyuk V S, Sander D and Kirschner J 2014 Rev. Mod. Phys. 86 1127 [31] Hamamoto K, Ezawa M and Nagaosa N 2015 Phys. Rev. B 92 115417 [32] Matsui A, Nomoto T and Arita R 2021 Phys. Rev. B 104 174432 [33] Gomilšek M, Hicken T J, Wilson M N, Franke K J A, Huddart B M, Stefančič A, Holt S J R, Balakrishnan G, Mayoh D A, Birch M T, Moody S H, Luetkens H, Guguchia Z, Telling M T F, Baker P J, Clark S J and Lancaster T 2025 Phys. Rev. Lett. 134 046702 [34] Leonov A O and Mostovoy M 2015 Nat. Commun. 6 8275 [35] Dong Y, Arai Y, Kuroda K, Ochi M, Tanaka N, Wan Y, Watson M D, Kim T K, Cacho C, Hashimoto M, Lu D, Aoki Y, Matsuda T D and Kondo T 2024 Phys. Rev. Lett. 133 016401 [36] Bouaziz J, Mendive-Tapia E, Blügel S and Staunton J B 2022 Phys. Rev. Lett. 128 157206 [37] Moody S H, Bereciartua P J, Francoual S, Littlehales M T, Wilson M N, Gomilšek M, Birch M T, Mayoh D A, Balakrishnan G and Hatton P D 2025 Phys. Rev. Lett. 135 076706 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|