Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027405    DOI: 10.1088/1674-1056/ae23b2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Type-II character and anisotropic superconductivity in natural superconducting covellite

Zouyouwei Lu(鲁邹有为)1,2,†, Yuhang Zhang(张宇航)1,2,†,‡, Qiming Zhang(张栖铭)1,2,†, Xinyi Zheng(郑新义)1,2, Ningning Wang(王宁宁)1,2, Jihu Lu(卢佶虎)1,2, Jiali Liu(刘家利)1,2, Feng Wu(吴凤)1,3, Chengjie Xu(徐诚杰)1,2, Yunzhenshan Gao(高运蓁山)1,2, Hua Zhang(张华)1,2, Jianping Sun(孙建平)1,2, Jin-Guang Cheng(程金光)1,2, Guangtong Liu(刘广同)1,2,§, Ziyi Liu(刘子儀)1,2,¶, and Xiaoli Dong(董晓莉)1,2
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  We report a comprehensive investigation of the superconducting properties of the mineral superconductor covellite (CuS) using high-quality single crystals. First, we establish that CuS is an intrinsic type-II superconductor, correcting its long-standing classification as type-I. Second, a complete set of anisotropic superconducting parameters is determined, including the critical fields, penetration depth and coherence length, which yield a Ginzburg-Landau parameter κ~1.5 and a moderate anisotropy of γ~2. Our results indicate that this type-II superconductivity can be well-described by a conventional, weak-coupling, single-band s-wave pairing mechanism. This work fills a long-standing gap in the understanding of this archetypal superconductor.
Keywords:  type-II superconductivity      critical parameters      anisotropy      covellite  
Received:  20 November 2025      Accepted manuscript online:  25 November 2025
PACS:  74.25.-q (Properties of superconductors)  
Fund: We are grateful for the enlightening discussions with Prof. Zhongxian Zhao. This work was supported by the National Key Research and Development Program of China (Grant Nos. 2024YFA1611102, 2022YFA1403903, 2022YFA1602802, and 2023YFA1406101), the National Natural Science Foundation of China (Grant No. 12304075), and CAS Project for Young Scientists in Basic Research (Grant No. 2022YSBR-048).

Cite this article: 

Zouyouwei Lu(鲁邹有为), Yuhang Zhang(张宇航), Qiming Zhang(张栖铭), Xinyi Zheng(郑新义), Ningning Wang(王宁宁), Jihu Lu(卢佶虎), Jiali Liu(刘家利), Feng Wu(吴凤), Chengjie Xu(徐诚杰), Yunzhenshan Gao(高运蓁山), Hua Zhang(张华), Jianping Sun(孙建平), Jin-Guang Cheng(程金光), Guangtong Liu(刘广同), Ziyi Liu(刘子儀), and Xiaoli Dong(董晓莉) Type-II character and anisotropic superconductivity in natural superconducting covellite 2026 Chin. Phys. B 35 027405

[1] Hu J 2016 Sci. Bull. 61 561
[2] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[3] Di Benedetto F, Borgheresi M, Caneschi A, Chastanet G, Cipriani C, Gatteschi D, Pratesi G, Romanelli M and Sessoli R 2006 European Journal of Mineralogy 18 283
[4] Meissner W 1929 Zeitschrift fur Physik 58 570
[5] Gonsçalves A, Lopes E, Casaca A, Dias M and Almeida M 2008 Journal of Crystal Growth 310 2742
[6] Casaca A, Lopes E, Gonsçalves A and Almeida M 2011 J. Phys.: Condens. Matter 24 015701
[7] Chung J S and Sohn H J 2002 Journal of Power Sources 108 226
[8] Jiang K, Chen Z and Meng X 2019 ChemElectroChem 6 2825
[9] Wei T, Liu Y, Dong W, Zhang Y, Huang C, Sun Y, Chen X and Dai N 2013 ACS Appl. Mater. Interfaces 5 10473
[10] Xie Y, Carbone L, Nobile C, Grillo V, D’agostino S, Della Sala F, Giannini C, Altamura D, Oelsner C and Kryschi C 2013 ACS Nano 7 7352
[11] Basu M, Sinha A K, Pradhan M, Sarkar S, Negishi Y and Pal T 2010 Environmental Science & Technology 44 6313
[12] Kuchmii S Y, Korzhak A, Raevskaya A and Kryukov A 2001 Theoretical and Experimental Chemistry 37 36
[13] Fjellvag H, Grenvøld F, Stølen S, Andresen A F, Muller-K afer R and Simon A 1988 Zeitschrift fur Kristallographie-Crystalline Materials 184 111
[14] Mazin I 2012 Phys. Rev. B 85 115133
[15] Nozaki H, Shibata K and Ohhashi N 1991 Journal of Solid State Chemistry 91 306
[16] Gainov R, Dooglav A, Pen’kov I, Mukhamedshin I, Mozgova N, Evlampiev I and Bryzgalov I 2009 Phys. Rev. B 79 075115
[17] Arora S, Kabra K, Joshi K, Sharma B and Sharma G 2020 Physica B 582 311142
[18] Soares Jr A L, Dos Santos E C, Morales-García A, Heine T, De Abreu H A and Duarte H A 2016 2D Mater. 4 015041
[19] Morales-García A, Soares Jr A L, Dos Santos E C, De Abreu H A and Duarte H L A 2014 The Journal of Physical Chemistry A 118 5823
[20] Liang W and Whangbo M-H 1993 Solid State Commun. 85 405
[21] Antezak A, Kato T, Rezende-Gonsçalves P, Fortuna F, Rosmus M, Olszowska N, Santander-Syro A F and Frantzeskakis E 2025 Phys. Rev. B 112 115103
[22] Nakajima T, Isino M and Kanda E 1970 J. Phys. Soc. Jpn. 28 369
[23] Buckel W and Hilsch R 1950 Zeitschrift fur Physik 128 324
[24] Tinkham M 2004 Introduction to Superconductivity
[25] Saito S H, Kishi H, Nie K, Nakamaru H, Wagatsuma F and Shinohara T 1997 Phys. Rev. B 55 14527
[26] Prozorov R and Giannetta R W 2006 Superconductor Science and Technology 19 R41
[27] Ziman J 1964 Principles of the Theory of Solids
[28] Wilson A H 1938 Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 167 580
[29] Westrum Jr E F, Stølen S and Grønvold F 1987 The Journal of Chemical Thermodynamics 19 1199
[30] Imai Y, Nabeshima F, Yoshinaka T, Miyatani K, Kondo R, Komiya S, Tsukada I and Maeda A 2012 J. Phys. Soc. Jpn. 81 113708
[31] Mcmillan W L 1968 Phys. Rev. 167 331
[1] Thickness dependence of the magnetic properties of barium ferrite films prepared by pulsed laser deposition
Chengbo Zhao(赵诚博), Bowei Han(韩博纬), Yuchen Zhao(赵宇辰), Yang Sun(孙洋), Lichen Wang(王利晨), Ruoshui Liu(刘若水), Yunzhong Chen(陈允忠), and Dengjing Wang(王登京). Chin. Phys. B, 2026, 35(2): 027504.
[2] Strong enhancement of spin-orbit torques and perpendicular magnetic anisotropy in [Pt0.75Ti0.25/Co-Ni multilayer/Ta]n superlattices
Xiaomiao Yin(阴小苗), Zhengxiao Li(李政霄), Jun Kang(康俊), Changmin Xiong(熊昌民), and Lijun Zhu(朱礼军). Chin. Phys. B, 2026, 35(1): 018502.
[3] Magnetic anisotropy in MnGe thin films and its evolution under external magnetic fields
Zhaohang Li(李朝航), Fanbao Meng(孟凡保), Kesen Zhao(赵科森), Tao Qi(齐涛), Shihao Liu(刘仕豪), Zongyao Huang(黄宗耀), Feixiong Quan(全飞熊), Zhiwei Wang(王智炜), Zhengjie Wang(王郑杰), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Yubin Hou(侯玉斌), Wenjie Meng(孟文杰), Qingyou Lu(陆轻铀), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2026, 35(1): 016802.
[4] In-plane optical anisotropy of InGaN/GaN quantum disks in nanowires investigated by reflectance difference spectroscopy
Tingting Wei(韦婷婷), Jinling Yu(俞金玲), Zhu Diao, Zhaonan Li(李兆男), Shuying Cheng(程树英), Yunfeng Lai(赖云锋), Yonghai Chen(陈涌海), and Chao Zhao(赵超). Chin. Phys. B, 2025, 34(6): 067302.
[5] Electronic structure of a narrow-gap semiconductor KAg3Te2
Rong Feng(冯荣), Haotian Zheng(郑昊天), Haoran Liu(刘浩然), Binru Zhao(赵彬茹), Xunqing Yin(尹训庆), Zhihua Liu(刘智华), Feng Liu(刘峰), Guohua Wang(王国华), Xiaofeng Xu(许晓峰), Wentao Zhang(张文涛), Weidong Luo(罗卫东), Wei Zhou(周苇), and Dong Qian(钱冬). Chin. Phys. B, 2025, 34(4): 047102.
[6] Perpendicular magnetic anisotropy of Pd/Co2MnSi/Co/Pd multilayer
Xiaoqi Qin(秦晓奇), Jiaxing Tan(谭家兴), Xianwu Xiu(修显武), Wentian Cao(曹文田), and Shuyun Wang(王书运). Chin. Phys. B, 2025, 34(3): 037502.
[7] Thickness dependence of linearly polarized light-induced momentum anisotropy and inverse spin Hall effect in topological insulator Bi2Te3
Jiayi Qiu(邱嘉毅), Jinling Yu(俞金玲), Zhu Diao(刁佇), Yunfeng Lai(赖云锋), Shuying Cheng(程树英), Yonghai Chen(陈涌海), and Ke He(何珂). Chin. Phys. B, 2025, 34(11): 117103.
[8] Electronic structure, elasticity, magnetism of Mn2XIn(X =Fe, Co) full Heusler compounds under biaxial strain: First-principles calculations
Shiran Gao(皋世苒), Chengyang Zhao(赵成洋), Xinzhuo Zhang(张欣卓), Wen Qiao(乔文), Shiming Yan(颜士明), Ru Bai(白茹), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(1): 017501.
[9] Dendritic tip selection during solidification of alloys: Insights from phase-field simulations
Qingjie Zhang(张清杰), Hui Xing(邢辉), Lingjie Wang(王灵杰), and Wei Zhai(翟薇). Chin. Phys. B, 2024, 33(9): 096103.
[10] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[11] Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases
Xing-Zhou Tang(汤星舟), Jia-Yao Ye(叶家耀), Zi-Ye Wang(王子烨), Hao-Yi Jiang(姜皓译), Xiao-Hu Shang(尚小虎), Zhao-Yan Yang(杨朝雁), and Bing-Xiang Li(李炳祥). Chin. Phys. B, 2024, 33(8): 087702.
[12] First-principles study of electronic and magnetic properties of Fe atoms on Cu2N/Cu(100)
Jiale Chen(陈佳乐) and Jun Hu(胡军). Chin. Phys. B, 2024, 33(8): 087502.
[13] Anisotropic metal-insulator transition in strained VO2(B) single crystal
Zecheng Ma(马泽成), Shengnan Yan(闫胜楠), Zenglin Liu(刘增霖), Tao Xu(徐涛), Fanqiang Chen(陈繁强), Sicheng Chen(陈思成), Tianjun Cao(曹天俊), Litao Sun(孙立涛), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(6): 067103.
[14] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[15] Nonreciprocal transport in the superconducting state of the chiral crystal NbGe2
Yonglai Liu(刘永来), Xitong Xu(许锡童), Miao He(何苗), Haitian Zhao(赵海天), Qingqi Zeng(曾庆祺), Xingyu Yang(杨星宇), Youming Zou(邹优鸣), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(5): 057402.
No Suggested Reading articles found!