Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027201    DOI: 10.1088/1674-1056/ae1205
TOPICAL REVIEW — Multiferroicity and multicaloric effects Prev   Next  

High-performance thermomagnetic generation in low-grade waste heat recovery

Haodong Chen(陈浩东)1, Hu Zhang(张虎)1,†, Mingze Liu(刘明泽)1, Kaiming Qiao(乔凯明)1, Lichen Wang(王利晨)2, Fengxia Hu(胡凤霞)3,‡, and Baogen Shen(沈保根)2,3,§
1 School of Materials Science and Engineering, University of Science and Technology of Beijing, Beijing 100083, China;
2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Thermomagnetic generation (TMG), a heat-to-electricity conversion technology based on the thermomagnetic effect, offers high reliability and broad adaptability to diverse heat sources. By exploiting the temperature-dependent magnetization of thermomagnetic materials, TMG converts thermal energy into electrical energy through cyclic changes in magnetic flux based on Faraday's law. The performance of TMG systems is largely governed by the intrinsic properties of the working materials and the design of device architecture. Ideal TMG materials exhibit sharp and reversible magnetization transitions near the operating temperature, low thermal hysteresis, and high thermal conductivity. Device configurations can be broadly categorized into active and passive systems: active TMG devices rely on controlled thermal cycling and optimized magnetic circuits for enhanced output, whereas passive devices utilize self-actuated mechanical motion to generate electricity. In this topical review, we provide a comprehensive overview of recent advances in TMG materials and device configurations. Furthermore, we discuss future development trends and offer perspectives on experimental strategies to advance this field.
Keywords:  low grade waste heat      thermal energy recovery      thermomagnetic generation  
Received:  02 September 2025      Revised:  10 October 2025      Accepted manuscript online:  11 October 2025
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 52171169 and 52101210), the National Key Research and Development Program of China (Grant No. 2021YFB3501204), the State Key Laboratory for Advanced Metals and Materials (Grant No. 2023-ZD01), USTB Concept Verification Funding Project (Grant No. GNYZ-2024-6), Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-24-004A), USTB Research Center for International People-to-people Exchange in Science, Technology and Civilization (Grant Nos. 2024KFZD001 and 2024KFYB004).
Corresponding Authors:  Hu Zhang, Fengxia Hu, Baogen Shen     E-mail:  zhanghu@ustb.edu.cn;fxhu@iphy.ac.cn;shenbg@iphy.ac.cn

Cite this article: 

Haodong Chen(陈浩东), Hu Zhang(张虎), Mingze Liu(刘明泽), Kaiming Qiao(乔凯明), Lichen Wang(王利晨), Fengxia Hu(胡凤霞), and Baogen Shen(沈保根) High-performance thermomagnetic generation in low-grade waste heat recovery 2026 Chin. Phys. B 35 027201

[1] Forman C, Muritala I K, Pardemann R and Meyer B 2016 Renewable Sustainable Energy Rev. 57 1568
[2] Schierning G 2018 Nat. Energy 3 92
[3] Kishore R A and Priya S 2017 Sustain. Energy Fuels 1 1899
[4] Madhawa Hettiarachchi H D, Golubovic M, Worek W M and Ikegami Y 2007 Energy 32 1698
[5] Firth A, Zhang B and Yang A D 2019 Appl. Energy 235 1314
[6] Chen L, Msigwa G, Yang M Y, Osman A I, Fawzy S, Rooney DWand Yap P S 2022 Environ. Chem. Lett. 20 2277
[7] Kim T Y, Kwak J and Kim B W 2018 Energy Convers. Manage. 160 14
[8] Choi J, Cho K, Yun J, Park Y, Yang S and Kim S 2017 Adv. Energy Mater. 7 1700972
[9] Radouane N 2023 Chin. Phys. B 32 057307
[10] Bucsek A, Nunn W, Jalan B and James R D 2019 Phys. Rev. Appl. 12 034043
[11] Zhao T T, Jiang W T, Niu D, Liu H Z, Chen B D, Shi Y S, Yin L and Lu B H 2017 Appl. Energy 195 754
[12] Ravindran S K T, Huesgen T, KroenerMandWoias P 2011 Appl. Phys. Lett. 99 104102
[13] Ren J 2023 Chin. Phys. Lett. 40 090501
[14] Deepak K, Varma V B, Prasanna G and Ramanujan R V 2019 Appl. Energy 233–234 312
[15] Kishore R A, Davis B, Greathouse J, Hannon A, Emery Kennedy D, Millar A, Mittel D, Nozariasbmarz A, Kang M G, Kang H B, Sanghadasa M and Priya S 2019 Energy Environ. Sci. 12 1008
[16] Hur S, Kim S, Kim H S, Kumar A, Kwon C, Shin J, Kang H, Sung T H, Ryu J, Baik J M and Song H C 2023 Nano Energy 114 108596
[17] Kishore R A and Priya S 2018 Materials 11 1081433
[18] Vuarnoz D, Kitanovski A, Gonin C, Borgeaud Y, Delessert M, Meinen M and Egolf P W 2012 Appl. Energy 100 229
[19] Chiolerio A, Garofalo E, Mattiussi F, Crepaldi M, Fortunato G and Iovieno M 2020 Appl. Energy 277 115591
[20] Bevione M, Garofalo E, Cecchini L and Chiolerio A 2020 MRS Energy Sustain. 7 1
[21] Cai C C, Luo B, Liu Y H, Fu Q, Liu T, Wang S F and Nie S X 2022 Mater. Today 52 299
[22] Chatterjee S, Burman S R, Khan I, Saha S, Choi D, Lee S and Lin Z-H 2020 Nanoscale 12 17663
[23] Tesla N (U.S. Patent) 428,057 [1890]
[24] Edison (U.S. Patent) 476,983 [1892]
[25] Elliott J F 1959 J. Appl. Phys. 30 1774
[26] Stauss H E 1959 J. Appl. Phys. 30 698
[27] Kirol L D and Mills J I 1984 J. Appl. Phys. 56 824
[28] Tegus O, Brück E, Buschow K and Boer F 2002 Nature 415 150
[29] Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
[30] Smith A, Bahl C R H, Bjørk R, Engelbrecht K, Nielsen K K and Pryds N 2012 Adv. Energy Mater. 2 1288
[31] Chen H D, Ma Z H, Liu X L, Qiao K M, Xie L L, Li Z X, Shen J, Dai W, Ou Z Q, Yibole H, Tegus O, Taskaev S V, Chu K, Long Y and Zhang H 2022 Appl. Energy 306 117999
[32] Waske A, Dzekan D, Sellschopp K, Berger D, Stork A, Nielsch K and Fähler S 2018 Nat. Energy 4 68
[33] Deepak K, Pattanaik M S and Ramanujan R V 2019 Appl. Energy 256 113917
[34] Srivastava V, Song Y, Bhatti K and James R D 2011 Adv. Energy Mater. 1 97
[35] Dzekan D, Waske A, Nielsch K and Fähler S 2021 APL Mater. 9 011105
[36] Song Y T, Bhatti K P, Srivastava V, Leighton C and James R D 2013 Energy Environ. Sci. 6 1315
[37] Zabek D and Morini F 2019 Therm. Sci. Eng. Prog. 9 235
[38] Rashidi S, EhsaniMH, ShakouriMand Karimi N 2021 J. Magn. Magn. Mater. 537 168112
[39] Kishore R A and Priya S 2018 Renewable Sustainable Energy Rev. 81 34
[40] Solomon D 1988 J. Appl. Phys. 63 915
[41] Gueltig M, Wendler F, Ossmer H, Ohtsuka M, Miki H, Takagi T and Kohl M 2017 Adv. Energy Mater. 7 1601879
[42] Liu X L, Zhang H, Chen H D, Ma Z H, Qiao K M, Xie L L, Ou Z Q, Wang J, Hu F X and Shen B G 2023 Appl. Therm. Eng. 221 119827
[43] Liu X L, Chen H D, Huang J Y, Qiao K M, Yu Z Y, Xie L L, Ramanujan R V, Hu F X, Chu K, Long Y and Zhang H 2023 Nat. Commun. 14 4811
[44] Chen H D, Liu M Z, Yu Z Y, Qiao K M, Naeem M Z, Liu J Y, Xie L L, Liu Y, Huang M F, Li Z X, Shen J, Hu F X, Shen B G and Zhang H 2025 Adv. Mater. 37 2500544
[45] Chen H D, Liu X L, Liu Y, Xie L L, Yu Z Y, Qiao K M, Liu M Z, Hu F X, Shen B G, Ramanujan R V, Chu K and Zhang H 2024 Mater. Horiz. 11 2603
[46] Jiang C, Zhu S M, Yu G Y, Luo E C and Li K 2022 Appl. Energy 311 118585
[47] Joseph J, Fontana E, Devillers T, Dempsey N M and Kohl M 2023 Adv. Funct. Mater. 33 2301250
[48] Kishore R A, Singh D, Sriramdas R, Garcia A J, Sanghadasa M and Priya S 2020 J. Appl. Phys. 127 044501
[49] Ma Z H, Chen H D, Liu X L, Xing C F, Wu M L, Wang Y X, Liu P R, Ou Z Q, Shen J, Taskaev S V, Long K W, Long Y and Zhang H 2021 Adv. Sustainable Syst. 5 2000234
[50] Song Y 2014 Phys. Chem. Chem. Phys. 16 12750
[51] Post A, Knight C and Kisi E 2013 J. Appl. Phys. 114 033915
[52] Pecharsky A O, Gschneidner K A and Pecharsky V K 2003 J. Appl. Phys. 93 4722
[53] Raj Kumar D M, Manivel Raja M, Prabahar K, Chandrasekaran V, Poddar A, Ranganathan R and Suresh K G 2011 J. Magn. Magn. Mater. 323 1750
[54] Christiaanse T and Brück E 2014 Metall. Mater. Trans. E 1 36
[55] Bi L G, Tegus O, Yi R Shi H R 2012 Acta Phys. Sin. 61 077103 (in Chinese)
[56] Liu Z S, Tegus O, Ou Z Q, Fan W D, Song Z Q, Ha Si Chao Lu, Wei W and Han R 2015 Acta Phys. Sin. 64 047103 (in Chinese)
[57] Liu J Q, Long Y, Bai D L, Sun H, Zhang H, Long K W and Yan T B 2019 AIP Adv. 9 045227
[58] Lallart M, Wang L, Sebald G, Petit L and Guyomar D 2014 Phys. Lett. A 378 3151
[59] Ahmim S, Almanza M, Loyau V, Mazaleyrat F, Pasko A, Parrain F and LoBue M 2021 J. Magn. Magn. Mater. 540 168428
[60] Dzekan D, Kischnik T D, Diestel A, Nielsch K and Fähler S 2022 J. Phys.: Energy 4 024006
[61] Dzekan D, Diestel A, Berger D, Nielsch K and Fahler S 2021 Sci. Technol. Adv. Mater. 22 643
[62] Bahl C R H, Engelbrecht K, Gideon A, Levy M A V, Marcussen J B, Imbaquingo C and Bjørk R 2024 Appl. Energy 376 124304
[63] Ujihara M, Carman G P and Lee D G 2007 Appl. Phys. Lett. 91 093508
[64] Gueltig M, Ossmer H, Ohtsuka M, Miki H, Tsuchiya K, Takagi T and Kohl M 2014 Adv. Energy Mater. 4 1400751
[65] Joseph J, Ohtsuka M, Miki H and Kohl M 2022 iScience 25 104569
[66] Joseph J, Ohtsuka M, Miki H and Kohl M 2020 Joule 4 2718
[67] Chen C, Chung T, Tseng C, Hung C, Yeh P and Cheng C 2015 IEEE Trans. Magn. 51 9100309
[68] Chun J, Song H C, Kang M G, Kang H B, Kishore R A and Priya S 2017 Sci. Rep. 7 41383
[69] Chun J, Kishore R A, Kumar P, Kang M G, Kang H B, Sanghadasa M and Priya S 2018 ACS Appl. Mater. Interfaces 10 10796
[70] Rodrigues C, Pires A, Gonçalves I, Silva D, Oiiveira J, Pereira A and Ventura J 2022 Adv. Funct. Mater. 32 2110288
[71] Gong S K, Wang X W, Tang B Z, Xiong Z Y, Qi S, Chen J, Yu P and Guo H Y 2024 Adv. Mater. 36 2402824
[72] Li H, Kim I, Goh T S, Il Lee J and Kim D 2025 Nano Energy 138 110899
[73] Kim J, Yoo J, Seo H, Avila R, Chung G, Shin G, Gwak S, Han Y, Lee J H, Yoon H J and Park Y 2025 Sci. Adv. 11 eadu5919
[74] Ahmed R, Kim Y, Mehmood M U, Zeeshan, Shaislamov U and Chun W 2019 Int. J. Energy Res. 2 1
[75] Cugini F, Gallo L, Garulli G, Olivieri D, Trevisi G, Fabbrici S, Albertini F and Solzi M 2025 Acta Mater. 288 120847
[1] Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy
Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2024, 33(8): 086804.
[2] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[3] Nonlinear Seebeck and Peltier effects in a Majorana nanowire coupled to leads
Feng Chi(迟锋), Jia Liu(刘佳), Zhenguo Fu(付振国), Liming Liu(刘黎明), and Zichuan Yi(易子川). Chin. Phys. B, 2024, 33(7): 077301.
[4] Rational design and synthesis of Cr1-xTe/Ag2Te composites for solid-state thermoelectromagnetic cooling near room temperature
Xiaochen Sun(孙笑晨), Chenghao Xie(谢承昊), Sihan Chen(陈思汗), Jingwei Wan(万京伟), Gangjian Tan(谭刚健), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2024, 33(5): 057201.
[5] High-entropy alloys in thermoelectric application: A selective review
Kai Ren(任凯), Wenyi Huo(霍文燚), Shuai Chen(陈帅), Yuan Cheng(程渊), Biao Wang(王彪), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(5): 057202.
[6] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[7] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[8] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[9] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[10] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[11] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[12] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[13] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[14] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[15] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
No Suggested Reading articles found!