Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 025201    DOI: 10.1088/1674-1056/ae2113
RAPID COMMUNICATION Prev  

Effects of coil structure and electromagnetic shielding on plasma distribution and uniformity in large-area radio-frequency inductively coupled plasmas

Cheng Xin(辛程)1, Xiang-Yun Lyu(吕翔云)1,†, Si-Yu Xing(邢思雨)1, Yu-Ru Zhang(张钰如)1, Tao Liu(刘涛)2, Wei-Ping Le(乐卫平)2, Fei Gao(高飞)3,1,‡, and You-Nian Wang(王友年)1
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
2 Shenzhen CSL Vacuum Science and Technology Co., Ltd., Shenzhen 518101, China;
3 School of Integrated Circuits, Dalian University of Technology, Dalian 116024, China
Abstract  Improving plasma uniformity is a critical issue in the development of large-area radio-frequency (RF) inductively coupled plasma (ICP) sources. In this work, the effects of coil structure and electromagnetic shielding on the spatial distribution and uniformity of the plasma are systematically investigated using a three-dimensional fluid model. The model integrates plasma and electromagnetic field modules to simulate the discharge characteristics of a large-area RF ICP source with dimensions of 100 cm ×50 cm. The results reveal that the electron density distribution varies significantly with the coil structure. For the rotating and translating coil structures, the electron density is high at off-axis positions and low at the center. In contrast, the mirror coil structure exhibits a significantly higher electron density at the chamber center, resulting in a high-center and low-edge density distribution. Among the three configurations, the rotating coil structure provides the best plasma uniformity. The incorporation of electromagnetic shielding further improves plasma uniformity, particularly for the mirror coil structure. For the rotating and translating coil structures, the electron density exhibits a saddle-shaped distribution regardless of electromagnetic shielding. However, introducing electromagnetic shielding into the mirror coil structure reduces the electron density at the chamber center and decreases the non-uniformity degree by 18.4 %. Overall, the mirror coil structure with electromagnetic shielding achieves the highest uniformity, with an exceptional plasma uniformity of 94 %. This work offers valuable insights for the design of large-area ICP sources in advanced plasma processing systems.
Keywords:  large-area radio-frequency inductively coupled plasma      three-dimensional fluid model      plasma uniformity  
Received:  12 September 2025      Revised:  02 November 2025      Accepted manuscript online:  19 November 2025
PACS:  52.25.-b (Plasma properties)  
  52.25.Fi (Transport properties)  
  52.65.-y (Plasma simulation)  
  52.80.Pi (High-frequency and RF discharges)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12075049 and 11935005).
Corresponding Authors:  Xiang-Yun Lyu, Fei Gao     E-mail:  xylv@dlut.edu.cn;fgao@dlut.edu.cn

Cite this article: 

Cheng Xin(辛程), Xiang-Yun Lyu(吕翔云), Si-Yu Xing(邢思雨), Yu-Ru Zhang(张钰如), Tao Liu(刘涛), Wei-Ping Le(乐卫平), Fei Gao(高飞), and You-Nian Wang(王友年) Effects of coil structure and electromagnetic shielding on plasma distribution and uniformity in large-area radio-frequency inductively coupled plasmas 2026 Chin. Phys. B 35 025201

[1] Wu Y and Lieberman M A 2000 Plasma Sources Sci. Technol. 9 210
[2] Kim S S, Hamaguchi S, Yoon N S, Chang C S, Lee Y D and Ku S H 2001 Phys. Plasmas 8 1384
[3] Meziani T, Colpo P and Rossi F 2001 Plasma Sources Sci. Technol. 10 276
[4] Lee Y J, Kim K N, Song B K and Yeom G Y 2003 Thin Solid Films 435 275
[5] Jung S J, Kim K N and Yeom G Y 2005 Surf. Coat. Technol. 200 780
[6] Kim K N, Lim J H, Yeom G Y, Lee S H and Lee J K 2006 Appl. Phys. Lett. 89 251501
[7] Kim H J, Hwang H J, Kim D H, Cho J H, Chae H S and Chung C W 2015 J. Appl. Phys. 117 153302
[8] Mehedi H A, Ferrah D, Dubois J, Petit-Etienne C, Okuno H, Bouchiat V, Renault O and Cunge G 2018 J. Appl. Phys. 124 125304
[9] Radovanov S, Samolov A and Distaso D 2019 Plasma Phys. Control. Fusion 61 014031
[10] Zhang T L, Jiang K Y, Liu ZW, Yang L Z, Zhang H B, Ouyang J T and Chen Q 2020 Plasma Sci. Technol. 22 085405
[11] Lee H C, Oh S and Chung C W 2012 Plasma Sources Sci. Technol. 21 035003
[12] Zhao Y, Zhou X H, Gao S R, Song S S and Zhao Y Z 2024 Plasma Sci. Technol. 26 075402
[13] Kim T W, Lee M Y, Hong Y H, Lee M H, Kim J H and Chung C W 2021 Plasma Sources Sci. Technol. 30 025002
[14] Lim J H, Kim K N, Park J K, Lim J T and Yeom G Y 2008 Appl. Phys. Lett. 92 051504
[15] Sun X Y, Zhang Y R, Ye J, Wang Y N and He J X 2021 Plasma Sci. Technol. 23 095404
[16] Son E J, Cho S H and Lee H J 2020 J. Electr. Eng. Technol. 15 2259
[17] Kim K N, Lim J H, Park J K, Lim J T and Yeom G Y 2008 Jpn. J. Appl. Phys. 47 7339
[18] Lee D S, Lee Y K and Chang H Y 2004 Plasma Sources Sci. Technol. 13 701
[19] Lee W H, Cheong H W, Kim J W and Whang K W 2015 Plasma Sources Sci. Technol. 24 065012
[20] O’Connell D, Crintea D L, Gans T and Czarnetzki U 2007 Plasma Sources Sci. Technol. 16 543
[21] Kim K N, Kim M S and Yeom G Y 2006 Appl. Phys. Lett. 88 161503
[22] Huang J W, Zhao M L, Zhang Y R, Gao F and Wang Y N 2023 Phys. Plasmas 30 043508
[23] He Y, Jiang Y L, Jung J, Kim M S, Kim J H and Chung C W 2023 Plasma Sources Sci. Technol. 32 075008
[24] Lee H C, Bang J Y and Chung C W 2011 Thin Solid Films 519 7009
[25] Kim K N, Jung S J and Yeom G Y 2005 Jpn. J. Appl. Phys. 44 8133
[26] 2024 COMSOL Multiphysics Documentation
[27] Kudryavtsev A A and Serditov K Y 2012 Phys. Plasmas 19 073504
[28] Bogaerts A and Gijbels R 1995 Phys. Rev. A 52 3743
[29] Gudmundsson J T, Kouznetsov I G, Patel K K and Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100
[30] Kim J H, Kim Y C and Chung C W 2015 Phys. Plasmas 22 073502
[31] Du P C, Zhao M L, Li H, Gao F and Wang Y N 2022 J. Appl. Phys. 131 133301
[32] Xing S Y, Gao F, Zhang Y R, Wang Y J, Lei G J and Wang Y N 2023 Plasma Sci. Technol. 25 105601
[1] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
No Suggested Reading articles found!