|
The B-site ordering in RFe0.5Cr0.5O3 ceramics and its effect on magnetic properties
Li Hou(侯利), Lei Shi(石磊), Liping Yang(杨利平), Yiqiang Liu(刘义强), Zhitao Li(李志涛), and Lanxiang Meng(孟蓝翔)
Chin. Phys. B, 2024, 33 (10):
108101.
DOI: 10.1088/1674-1056/ad641e
To insight into the B-site ordering in $R$Fe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics, a series of $R$Fe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics ($R={\rm La}$, Y, Lu) were synthesized by the sol-gel method, and the structural and magnetic properties were systemically investigated. By using the Rietveld refinement of all samples, it is found that the structural distortion is increased as the $R$ ionic radius decreases, leading to the weakened interactions between Fe/Cr ions. Moreover, the Fe and Cr are arranged in disorder in LaFe$_{0.5}$Cr$_{0.5}$O$_{3}$, but partially ordered in YFe$_{0.5}$Cr$_{0.5}$O$_{3}$ and LuFe$_{0.5}$Cr$_{0.5}$O$_{3}$, showing an increasing trend of the proportion of ordered domains with the decrease of $R$ ionic radius. Through fitting the temperature-dependent magnetizations, it is identified that the magnetization reversal (MR) in disorder LaFe$_{0.5}$Cr$_{0.5}$O$_{3}$ is resulted from the competition between the moments of Cr and Fe sublattices. In the partially ordered YFe$_{0.5}$Cr$_{0.5}$O$_{3}$ and LuFe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics, because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains, the compensation temperature $T_{\rm comp}$ of MR is increased by nearly 50 K. These results suggest that the changing of $R$-site ions could be used very effectively to modify the Fe-O-Cr ordering, apart from the structural distortion, which has a direct effect on the magnetic exchange interactions in $R$Fe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics. Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion, one can expect a higher transition temperature $T_{\rm comp}$, providing a different view for adjustment of the magnetic properties of $R$Fe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics for practical applications.
|