Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 108102    DOI: 10.1088/1674-1056/ad62df
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions

Maoyang Li(李茂洋)1,3, Chaochao Mo(莫超超)2, Peiyu Ji(季佩宇)3,4, Xiaoman Zhang(张潇漫)1,3, Jiali Chen(陈佳丽)6, Lanjian Zhuge(诸葛兰剑)5, Xuemei Wu(吴雪梅)1,3, Haiyun Tan(谭海云)1,3,‡, and Tianyuan Huang(黄天源)1,3,†
1 School of Physical Science and Technology, Soochow University, Suzhou 215000, China;
2 Suzhou Maxwell Technologies Co., Ltd., Suzhou 215000, China;
3 Jiangsu Key Laboratory of Frontier Material Physics and Devices, Suzhou 215000, China;
4 School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215000, China;
5 Analysis and Testing Center, Soochow University, Suzhou 215000, China;
6 School of Optical and Electronic Information, Suzhou City University & Suzhou Key Laboratory of Biophotonics, Suzhou 215104, China
Abstract  We deposited indium-tin-oxide (ITO) films on silicon and quartz substrates by magnetron sputtering technology in pure argon. Using electrostatic quadrupole plasma diagnostic technology, we investigate the effects of discharge power and discharge pressure on the ion flux and energy distribution function of incidence on the substrate surface, with special attention to the production of high-energy negative oxygen ions, and elucidate the mechanism behind its production. At the same time, the structure and properties of ITO films are systematically characterized to understand the potential effects of high energy oxygen ions on the growth of ITO films. Combining with the kinetic property analysis of sputtering damage mechanism of transparent conductive oxide (TCO) thin films, this study provides valuable physical understanding of optimization of TCO thin film deposition process.
Keywords:  magnetron sputtering      ion energy      ITO thin film      high energy oxygen anion  
Received:  10 May 2024      Revised:  03 July 2024      Accepted manuscript online:  15 July 2024
PACS:  81.15.Cd (Deposition by sputtering)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  61.80.Jh (Ion radiation effects)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Fund: This work was supported by the National Key R&D Program of China (Grant No. 2022YFE03050001) and the National Natural Science Foundation of China (Grant Nos. 12175160 and 12305284).
Corresponding Authors:  Haiyun Tan, Tianyuan Huang     E-mail:  tyhuang@suda.edu.cn;hytan@suda.edu.cn

Cite this article: 

Maoyang Li(李茂洋), Chaochao Mo(莫超超), Peiyu Ji(季佩宇), Xiaoman Zhang(张潇漫), Jiali Chen(陈佳丽), Lanjian Zhuge(诸葛兰剑), Xuemei Wu(吴雪梅), Haiyun Tan(谭海云), and Tianyuan Huang(黄天源) Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions 2024 Chin. Phys. B 33 108102

[1] Haschke J, Dupré O, Boccard M and Ballif C 2018 Solar Energy Mater. Solar Cells 187 140
[2] Shen W Z, Zhao Y X and Liu F 2022 Front. Energy 17 9
[3] Chavan G T, Kim Y, Khokhar M Q, Hussain S Q, Cho E C, Yi J, Ahmad Z, Rosaiah P and Jeon C W 2023 Nanomaterials 13 1226
[4] Nunomura S, Sakata I and Matsubara K 2018 Phys. Rev. Appl. 10 054006
[5] Le A H T, Dao V A, Pham D P, Kim S, Dutta S, Thi Nguyen C P, Lee Y, Kim Y and Yi J 2019 Solar Energy Mater. Solar Cells 192 36
[6] Liu K, Chen B, Yu Z S J, Wu Y L, Huang Z T, Jia X H, Li C, Spronk D, Wang Z J, Wang Z G, Qu S C, Holman Z C and Huang J S 2022 J. Mater. Chem. A 10 1343
[7] Linss V, Bivour M, Iwata H and Ortner K 2019 AIP Conf. Proc. 2147 040009
[8] Macias-Montero M, Garcia-Garcia F J, Álvarez R, Gil-Rostra J, Gonzalez J C, Cotrino J, González-Elipe A R and Palmero A 2012 J. Appl. Phys. 111 054312
[9] Mráz S and Schneider J M 2006 J. Appl. Phys. 100 023503
[10] Street R, Biegelsen D and Stuke J 1979 Philos. Mag. B 40 451
[11] Ishibashi S, Higuchi Y, Ota Y and Nakamura K 1990 J. Vac. Sci. Technol. A 8 1403
[12] Konishi T and Ohdaira K 2017 Thin Solid Films 635 73
[13] Caudevilla D, García-Hemme E, San Andrés E, Pérez-Zenteno F, Torres I, Barrio R, García-Hernansanz R, Algaidy S, Olea J, Pastor D and del Prado A 2022 Mater. Sci. Semiconduct. Process. 137 106189
[14] Tominaga K, Iwamura S, Fujita I, Shintani Y and Tada O 1982 Jpn. J. Appl. Phys. 21 999
[15] Mráz S and Schneider J M 2006 Appl. Phys. Lett. 89 051502
[16] Welzel T and Ellmer K 2011 Surf. Coat. Technol. 205 S294
[17] Huang T, Mo C, Cui M, Li M, Ji P, Tan H, Zhang X, Zhuge L and Wu X 2024 Vacuum 221 112848
[18] Pokorny P, Miýina M, Bulíř J, Lančok J, Fitl P, Musil J and Novotny M 2011 Plasma Process. Polym. 8 459
[19] Welzel T, Naumov S and Ellmer K 2011 J. Appl. Phys. 109 073302
[20] Mahieu S, Leroy W P, Van Aeken K and Depla D 2009 J. Appl. Phys. 106 093302
[21] Seeger S, Harbauer K and Ellmer K 2009 J. Appl. Phys. 105 053305
[22] Zeuner M, Neumann H, Zalman J and Biederman H 1998 J. Appl. Phys. 83 5083
[23] Tominaga K and Kikuma T 2001 J. Vac. Sci. Technol. A 19 1582
[24] Welzel T and Ellmer K 2012 J. Vac. Sci. Technol. A 30 061306
[25] Bowes M, Poolcharuansin P and Bradley J W 2013 J. Phys. D: Appl. Phys. 46 045204
[26] Mišina M, Bradley J W, Bäcker H, Aranda-Gonzalvo Y, Karkari S K and Forder D 2002 Vacuum 68 171
[27] Lee C and Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368
[28] Huang M, Hameiri Z, Aberle A G and Mueller T 2015 Vacuum 121 187
[29] Lei H, Ichikawa K, Hoshi Y, Wang M, Uchida T and Sawada Y 2010 Thin Solid Films 518 2926
[30] Zhao M J, Zhang J F, Huang Q H, Wu W Y, Tseng M C, Lien S Y and Zhu W Z 2022 Vacuum 196 110762
[31] Gan J, Lu X, Wu J, Xie S, Zhai T, Yu M, Zhang Z, Mao Y, Wang S C I, Shen Y and Tong Y 2013 Sci. Rep. 3 1021
[32] Lei F, Sun Y, Liu K, Gao S, Liang L, Pan B and Xie Y 2014 J. Am. Chem. Soc. 136 6826
[33] Zhao L, Zhou Z, Peng H and Cui R 2005 Appl. Surf. Sci. 252 385
[34] Sezemsky P, Burnat D, Kratochvil J, Wulff H, Kruth A, Lechowicz K, Janik M, Bogdanowicz R, Cada M, Hubicka Z, Niedziałkowski P, Białobrzeska W, Stranak V and Śmietana M 2021 Sens. Actuators B 343 130173
[35] Huang M, Liu Y S, He Z B and Yi Y 2022 Chin. Phys. B 31 066101
[1] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[2] Atomistic understanding of capacity loss in LiNiO2 for high-nickel Li-ion batteries: First-principles study
Shuai Peng(彭率), Li-Juan Chen(陈丽娟), Chang-Chun He(何长春), and Xiao-Bao Yang(杨小宝). Chin. Phys. B, 2024, 33(5): 058201.
[3] Dynamic responses of an energy harvesting system based on piezoelectric and electromagnetic mechanisms under colored noise
Yong-Ge Yang(杨勇歌), Yun Meng(孟运), Yuan-Hui Zeng(曾远辉), and Ya-Hui Sun(孙亚辉). Chin. Phys. B, 2023, 32(9): 090201.
[4] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[5] Facile integration of an Al-rich Al1-xInxN photodetector on free-standing GaN by radio-frequency magnetron sputtering
Xinke Liu(刘新科), Zhichen Lin(林之晨), Yuheng Lin(林钰恒), Jianjin Chen(陈建金), Ping Zou(邹苹), Jie Zhou(周杰), Bo Li(李博), Longhai Shen(沈龙海), Deliang Zhu(朱德亮), Qiang Liu(刘强), Wenjie Yu(俞文杰), Xiaohua Li(黎晓华), Hong Gu(顾泓), Xinzhong Wang(王新中), and Shuangwu Huang(黄双武). Chin. Phys. B, 2023, 32(11): 117701.
[6] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance
Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau. Chin. Phys. B, 2022, 31(6): 063402.
[9] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[10] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[11] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[12] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[13] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[14] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[15] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
No Suggested Reading articles found!