ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Statistical properties of ideal photons in a two-dimensional dye-filled spherical cap cavity |
Ze Cheng(成泽)† |
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Within the framework of quantum statistical mechanics, we have proposed an exact analytical solution to the problem of Bose-Einstein condensation (BEC) of harmonically trapped two-dimensional (2D) ideal photons. We utilize this analytical solution to investigate the statistical properties of ideal photons in a 2D dye-filled spherical cap cavity. The results of numerical calculation of the analytical solution agree completely with the foregoing experimental results in the BEC of harmonically trapped 2D ideal photons. The analytical expressions of the critical temperature and the condensate fraction are derived in the thermodynamic limit. It is found that the 2D critical photon number is larger than the one-dimensional (1D) critical photon number by two orders of magnitude. The spectral radiance of a 2D spherical cap cavity has a sharp peak at the frequency of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.
|
Received: 27 May 2024
Revised: 29 July 2024
Accepted manuscript online: 08 August 2024
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10174024 and 10474025). |
Corresponding Authors:
Ze Cheng
E-mail: zcheng@mail.hust.edu.cn
|
Cite this article:
Ze Cheng(成泽) Statistical properties of ideal photons in a two-dimensional dye-filled spherical cap cavity 2024 Chin. Phys. B 33 104206
|
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198 [2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 [3] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687 [4] Klaers J, Vewinger F and Weitz M 2010 Nat. Phys. 6 512 [5] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature 468 545 [6] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2012 Phys. Rev. Lett. 108 160403 [7] Kirton P and Keeling J 2013 Phys. Rev. Lett. 111 100404 [8] Fischer B and Weill R 2012 Opt. Express 20 26704 [9] de Leeuw A W, Stoof H T C and Duine R A 2013 Phys. Rev. A 88 033829 [10] van der Wurff E C I, de Leeuw A W, Duine R A and Stoof H T C 2014 Phys. Rev. Lett. 113 135301 [11] Chiocchetta A and Carusotto I 2014 Phys. Rev. A 90 023633 [12] Snoke D W and Girvin S M 2013 J. Low. Temp. Phys. 171 1 [13] Sob’yanin D N 2013 Phys. Rev. E 88 022132 [14] Kirton P and Keeling J 2015 Phys. Rev. A 91 033826 [15] Schmitt J, Damm T, Dung D, Vewinger F, Klaers J and Weitz M 2014 Phys. Rev. Lett. 112 030401 [16] Hesten H J, Nyman R A and Mintert F 2018 Phys. Rev. Lett. 120 040601 [17] Damm T, Schmitt J, Liang Q, Dung D, Vewinger F, Weitz M and Klaers J 2016 Nat. Commun. 7 11340 [18] Stein E and Pelster A 2022 New J. Phys. 24 023013 [19] Schmitt J 2018 J. Phys. B: At. Mol. Opt. Phys. 51 173001 [20] Öztürk F E, Lappe T, Hellmann G, Schmitt J, Klaers J, Vewinger F, Kroha J and Weitz M 2021 Science 372 88 [21] Sazhin A, Gladilin V N, Erglis A, Hellmann G, Vewinger F, Weitz M, Wouters M and Schmitt J 2024 Nat. Commun. 15 4730 [22] Pakuliak S and von Gehlen G 2001 Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Berlin: Springer) [23] Hadzibabic Z, Krüger P, Cheneau M, Battelier B and Dalibard J 2006 Nature 441 1118 [24] Jackson J D 1975 Classical Electrodynamics, 2nd edn. (New York: Wiley) p. 356 [25] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463 [26] Cheng Z 2015 J. Stat. Mech.-Theory E 2015 P11003 [27] Jackson F H 1904 Proc. Roy. Soc. London A 74 64 [28] Krattenthaler C and Srivastava H M 1996 Comput. Math. Appl. 32 73 [29] Salem A 2015 Analysis and Applications 13 125 [30] Salem A 2014 Banach J. Math. Anal. 8 109 [31] Cheng Ze 2016 Phys. Rev. A 93 023829 [32] Cheng Ze 2018 J. Stat. Mech.-Theory E 2018 013102 [33] Cheng Ze 2017 J. Stat. Mech.-Theory E 2017 113103 [34] Kofman A G, Kurizki G and Sherman B 1994 J. Mod. Opt. 41 353 [35] Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301 [36] Ji A C, Sun Q, Xie X C and Liu W M 2009 Phys. Rev. Lett. 102 023602 [37] Ji A C, Xie X C and Liu W M 2007 Phys. Rev. Lett. 99 183602 [38] Beau M and Zagrebnov V A 2010 Condens. Matter Phys. 13 23003 [39] Mullin W J and Sakhel A R 2012 J. Low Temp. Phys. 166 125 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|