CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin-orbit torque effect in silicon-based sputtered Mn3Sn film |
Sha Lu(卢莎)1,†, Dequan Meng(孟德全)1,†, Adnan Khan1, Ziao Wang(王子傲)1, Shiwei Chen(陈是位)1,2,‡, and Shiheng Liang(梁世恒)1,2,§ |
1 School of Physics, Hubei University, Wuhan 430062, China; 2 Key Laboratory for Intelligent Sensing System and Security of Ministry of Education, Wuhan 430062, China |
|
|
Abstract Noncollinear antiferromagnet Mn$_{3}$Sn has shown remarkable efficiency in charge-spin conversion, a novel magnetic spin Hall effect, and a stable topological antiferromagnetic state, which has resulted in great interest from researchers in the field of spin-orbit torque. Current research has primarily focused on the spin-orbit torque effect of epitaxially grown noncollinear antiferromagnet Mn$_{3}$Sn films. However, this method is not suitable for large-scale industrial preparation. In this study, amorphous Mn$_{3}$Sn films and Mn$_{3}$Sn/Py heterostructures were prepared using magnetron sputtering on silicon substrates. The spin-torque ferromagnetic resonance measurement demonstrated that only the conventional spin-orbit torque effect generated by in-plane polarized spin currents existed in the Mn$_{3}$Sn/Py heterostructure, with a spin-orbit torque efficiency of 0.016. Additionally, we prepared the perpendicular magnetized Mn$_{3}$Sn/CoTb heterostructure based on amorphous Mn$_{3}$Sn film, where the spin-orbit torque driven perpendicular magnetization switching was achieved with a lower critical switching current density (3.9$\times10^{7}$ A/cm$^{2})$ compared to Ta/CoTb heterostructure. This research reveals the spin-orbit torque effect of amorphous Mn$_{3}$Sn films and establishes a foundation for further advancement in the practical application of Mn$_{3}$Sn materials in spintronic devices.
|
Received: 28 April 2024
Revised: 26 June 2024
Accepted manuscript online: 09 July 2024
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE0103300), the National Natural Science Foundation of China (Grant No. 12274119), the Natural Science Foundation of Hubei Province (Grant No. 2022CFA088), and the Open Research Fund of Songshan Lake Materials Laboratory (Grant No. 2022SLABFN04). |
Corresponding Authors:
Shiwei Chen, Shiheng Liang
E-mail: chenshw@hubu.edu.cn;shihengliang@hubu.edu.cn
|
Cite this article:
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒) Spin-orbit torque effect in silicon-based sputtered Mn3Sn film 2024 Chin. Phys. B 33 107501
|
[1] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602 [2] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189 [3] Song C, Zhang R, Liao L Yang, Zhou Y J, Zhou X F, Chen R Y, You Y F, Chen X Z and Pan F 2021 Prog. Mater. Sci. 118 100761 [4] Cao Y, Xing G Z, Lin H, Zhang N, Zheng H Z and Wang K Y 2020 iScience 23 101614 [5] Han X F, Wang X, Wan C H, Yu G Q and Lv X R 2021 Appl. Phys. Lett. 118 120502 [6] Zhou J and Chen J S 2021 Adv. Electron. Mater. 7 2100465 [7] Bangar H, Khan K I A, Kumar A, Chowdhury N, Muduli P K and Muduli P K 2022 Adv. Quantum Technol. 6 2200115 [8] Hu S, Shao D F, Yang H L, Pan C, Fu Z X, Tang M, Yang Y M, Fan W J, Zhou S M, Tsymbal E Y and Qiu X P 2022 Nat. Commun. 13 4447 [9] Kondou K, Chen H, Tomita T, Ikhlas M, Higo T, Macdonald A H, Nakatsuji S and Otani Y C 2021 Nat. Commun. 12 6491 [10] Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z and Wang K Y 2023 Natl. Sci. Rev. 10 nwac154 [11] Cao C M, Chen S W, Xiao R C, Zhu Z T, Yu G Q, Wang Y P, Qiu X P, Liu L, Zhao T Y, Shao D F, Xu Y, Chen J S and Zhan Q F 2023 Nat. Commun. 14 5873 [12] Wang X N, Yan H, Zhou X R, Chen H Y, Feng Z X, Qin P X, Meng Z A, Liu L and Liu Z Q 2022 Mater. Today Phys. 28 100878 [13] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [14] Xu T, Bai H, Dong Y Q, Zhao L, Zhou H A, Zhang J W, Zhang X X and Jang W J 2023 APL Mater. 11 071116 [15] Zhang W F, Han W, Yang S H, Sun Y, Zhang Y, Yan B H and Parkin S S P 2016 Sci. Adv. 2 e1600759 [16] Kimata M, Chen H, Kondou K, Sugimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, Macdonald A H, Nakatsuji S and Otani Y 2019 Nature 565 627 [17] Hajiri T, Matsuura K, Sonoda K, Tanaka E, Ueda K and Asano H 2021 Phys. Rev. Appl. 16 024003 [18] Liu Z Q, Chen H, Wang J M, Liu J H, Wang K, Feng Z X, Yan H, Wang X R, Jiang C B, Coey J M D and Macdonald A H 2018 Nat. Electron 1 172 [19] Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y and Nakatsuji S 2017 Nat. Phys. 13 1085 [20] Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N and Tokura Y 2007 Phys. Rev. Lett. 99 086602 [21] Pu Y, Chiba D, Matsukura F, Ohno H and Shi J 2008 Phys. Rev. Lett. 101 117208 [22] Sakuraba Y, Hasegawa K, Mizuguchi M, Kubota T, Mizukami S, Miyazaki T and Takanashi K 2013 Appl. Phys. Express 6 033003 [23] Hasegawa K, Mizuguchi M, Sakuraba Y, Kamada T, Kojima T, Kubota T, Mizukami S, Miyazaki T and Takanashi K 2015 Appl. Phys. Lett. 106 252405 [24] Qin P X, Yan H, Wang X N, Chen H Y, Meng Z A, Dong J T, Zhu M, Cai J L, Feng Z X, Zhou X R, Liu L, Zhang T L, Zeng Z M, Zhang J, Jiang C B and Liu Z Q 2023 Nature 613 485 [25] Zhao H C Xia H, Hu S, Lv Y Y, Zhao Z R, He J, Liang E, Ni G, Chen L Y, Qiu X P, Zhou S M and Zhao H B 2021 Nat. Commun. 12 5266 [26] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090 [27] Wang X H, Hossain M T, Thapaliya T R, Khadka D, Lendinez S, Chen H, Doty M F, Jungfleisch M B, Huang S X, Fan X and Xiao J Q 2023 Phys. Rev. Mater. 7 034404 [28] Hibino Y, Taniguchi T, Yakushiji K, Fukushima A, Kubota H and Yuasa S 2020 Phys. Rev. Appl. 14 064056 [29] Binda F, Fedel S, Alvarado S F, Noel P and Gambardella P 2023 Adv. Mater. 35 2304905 [30] Hu C Y, Chiu Y F, Tsai Chia C, Huang C C, Chen K H, Peng C W, Lee C M, Song M Y, Huang Y L, Lin S J and Pai C F 2022 ACS Appl. Electron. Mater. 4 1099 [31] Peng C W, Liao W B, Chen T Y and Pai C F 2021 ACS Appl. Mater. Interfaces 13 15950 [32] Feng Z X, Zhou X R, Smejkal L, Wu L, Zhu Z W, Guo H X, González- Hernández R, Wang X N, Yan H, Qin P X, Zhang X, Wu H J, Chen H Y, Meng Z A, Liu L, Xia Z C, Sinova J, Jungwirth T and Liu Z Q 2022 Nat. Electron. 5 735 [33] You Y F, Chen X Z, Zhou X F, Gu Y D, Zhang R Q, Pan F and Song C 2019 Adv. Electron. Mater. 5 1800818 [34] Higo T, Qu D R, Li Y F, Chien C L, Otani Y and Satoru N 2018 Appl. Phys. Lett. 113 202402 [35] Liu L Q, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601 [36] Zhou J, Shu X Y, Liu Y H, Wang X, Lin W N, Chen S H, Liu L, Xie Q D, Hong T, Yang P, Yan B H, Han X F and Chen J S 2020 Phys. Rev. B 101 184403 [37] Sklenar J, Zhang W, Jungfleisch M B, Jiang W J, Chang H C, Pearson J E, Wu M Z, Ketterson J B and Hoffmann A 2015 Phys. Rev. B 92 174406 [38] Wang Y, Ramaswamy R and H Yang 2018 J. Phys. D: Appl. Phys. 51 273002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|