Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107501    DOI: 10.1088/1674-1056/ad6079
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-orbit torque effect in silicon-based sputtered Mn3Sn film

Sha Lu(卢莎)1,†, Dequan Meng(孟德全)1,†, Adnan Khan1, Ziao Wang(王子傲)1, Shiwei Chen(陈是位)1,2,‡, and Shiheng Liang(梁世恒)1,2,§
1 School of Physics, Hubei University, Wuhan 430062, China;
2 Key Laboratory for Intelligent Sensing System and Security of Ministry of Education, Wuhan 430062, China
Abstract  Noncollinear antiferromagnet Mn$_{3}$Sn has shown remarkable efficiency in charge-spin conversion, a novel magnetic spin Hall effect, and a stable topological antiferromagnetic state, which has resulted in great interest from researchers in the field of spin-orbit torque. Current research has primarily focused on the spin-orbit torque effect of epitaxially grown noncollinear antiferromagnet Mn$_{3}$Sn films. However, this method is not suitable for large-scale industrial preparation. In this study, amorphous Mn$_{3}$Sn films and Mn$_{3}$Sn/Py heterostructures were prepared using magnetron sputtering on silicon substrates. The spin-torque ferromagnetic resonance measurement demonstrated that only the conventional spin-orbit torque effect generated by in-plane polarized spin currents existed in the Mn$_{3}$Sn/Py heterostructure, with a spin-orbit torque efficiency of 0.016. Additionally, we prepared the perpendicular magnetized Mn$_{3}$Sn/CoTb heterostructure based on amorphous Mn$_{3}$Sn film, where the spin-orbit torque driven perpendicular magnetization switching was achieved with a lower critical switching current density (3.9$\times10^{7}$ A/cm$^{2})$ compared to Ta/CoTb heterostructure. This research reveals the spin-orbit torque effect of amorphous Mn$_{3}$Sn films and establishes a foundation for further advancement in the practical application of Mn$_{3}$Sn materials in spintronic devices.
Keywords:  spintronics      noncollinear antiferromagnetism      spin-orbit torque  
Received:  28 April 2024      Revised:  26 June 2024      Accepted manuscript online:  09 July 2024
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.50.Ee (Antiferromagnetics)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE0103300), the National Natural Science Foundation of China (Grant No. 12274119), the Natural Science Foundation of Hubei Province (Grant No. 2022CFA088), and the Open Research Fund of Songshan Lake Materials Laboratory (Grant No. 2022SLABFN04).
Corresponding Authors:  Shiwei Chen, Shiheng Liang     E-mail:  chenshw@hubu.edu.cn;shihengliang@hubu.edu.cn

Cite this article: 

Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒) Spin-orbit torque effect in silicon-based sputtered Mn3Sn film 2024 Chin. Phys. B 33 107501

[1] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[2] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[3] Song C, Zhang R, Liao L Yang, Zhou Y J, Zhou X F, Chen R Y, You Y F, Chen X Z and Pan F 2021 Prog. Mater. Sci. 118 100761
[4] Cao Y, Xing G Z, Lin H, Zhang N, Zheng H Z and Wang K Y 2020 iScience 23 101614
[5] Han X F, Wang X, Wan C H, Yu G Q and Lv X R 2021 Appl. Phys. Lett. 118 120502
[6] Zhou J and Chen J S 2021 Adv. Electron. Mater. 7 2100465
[7] Bangar H, Khan K I A, Kumar A, Chowdhury N, Muduli P K and Muduli P K 2022 Adv. Quantum Technol. 6 2200115
[8] Hu S, Shao D F, Yang H L, Pan C, Fu Z X, Tang M, Yang Y M, Fan W J, Zhou S M, Tsymbal E Y and Qiu X P 2022 Nat. Commun. 13 4447
[9] Kondou K, Chen H, Tomita T, Ikhlas M, Higo T, Macdonald A H, Nakatsuji S and Otani Y C 2021 Nat. Commun. 12 6491
[10] Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z and Wang K Y 2023 Natl. Sci. Rev. 10 nwac154
[11] Cao C M, Chen S W, Xiao R C, Zhu Z T, Yu G Q, Wang Y P, Qiu X P, Liu L, Zhao T Y, Shao D F, Xu Y, Chen J S and Zhan Q F 2023 Nat. Commun. 14 5873
[12] Wang X N, Yan H, Zhou X R, Chen H Y, Feng Z X, Qin P X, Meng Z A, Liu L and Liu Z Q 2022 Mater. Today Phys. 28 100878
[13] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[14] Xu T, Bai H, Dong Y Q, Zhao L, Zhou H A, Zhang J W, Zhang X X and Jang W J 2023 APL Mater. 11 071116
[15] Zhang W F, Han W, Yang S H, Sun Y, Zhang Y, Yan B H and Parkin S S P 2016 Sci. Adv. 2 e1600759
[16] Kimata M, Chen H, Kondou K, Sugimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, Macdonald A H, Nakatsuji S and Otani Y 2019 Nature 565 627
[17] Hajiri T, Matsuura K, Sonoda K, Tanaka E, Ueda K and Asano H 2021 Phys. Rev. Appl. 16 024003
[18] Liu Z Q, Chen H, Wang J M, Liu J H, Wang K, Feng Z X, Yan H, Wang X R, Jiang C B, Coey J M D and Macdonald A H 2018 Nat. Electron 1 172
[19] Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y and Nakatsuji S 2017 Nat. Phys. 13 1085
[20] Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N and Tokura Y 2007 Phys. Rev. Lett. 99 086602
[21] Pu Y, Chiba D, Matsukura F, Ohno H and Shi J 2008 Phys. Rev. Lett. 101 117208
[22] Sakuraba Y, Hasegawa K, Mizuguchi M, Kubota T, Mizukami S, Miyazaki T and Takanashi K 2013 Appl. Phys. Express 6 033003
[23] Hasegawa K, Mizuguchi M, Sakuraba Y, Kamada T, Kojima T, Kubota T, Mizukami S, Miyazaki T and Takanashi K 2015 Appl. Phys. Lett. 106 252405
[24] Qin P X, Yan H, Wang X N, Chen H Y, Meng Z A, Dong J T, Zhu M, Cai J L, Feng Z X, Zhou X R, Liu L, Zhang T L, Zeng Z M, Zhang J, Jiang C B and Liu Z Q 2023 Nature 613 485
[25] Zhao H C Xia H, Hu S, Lv Y Y, Zhao Z R, He J, Liang E, Ni G, Chen L Y, Qiu X P, Zhou S M and Zhao H B 2021 Nat. Commun. 12 5266
[26] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090
[27] Wang X H, Hossain M T, Thapaliya T R, Khadka D, Lendinez S, Chen H, Doty M F, Jungfleisch M B, Huang S X, Fan X and Xiao J Q 2023 Phys. Rev. Mater. 7 034404
[28] Hibino Y, Taniguchi T, Yakushiji K, Fukushima A, Kubota H and Yuasa S 2020 Phys. Rev. Appl. 14 064056
[29] Binda F, Fedel S, Alvarado S F, Noel P and Gambardella P 2023 Adv. Mater. 35 2304905
[30] Hu C Y, Chiu Y F, Tsai Chia C, Huang C C, Chen K H, Peng C W, Lee C M, Song M Y, Huang Y L, Lin S J and Pai C F 2022 ACS Appl. Electron. Mater. 4 1099
[31] Peng C W, Liao W B, Chen T Y and Pai C F 2021 ACS Appl. Mater. Interfaces 13 15950
[32] Feng Z X, Zhou X R, Smejkal L, Wu L, Zhu Z W, Guo H X, González- Hernández R, Wang X N, Yan H, Qin P X, Zhang X, Wu H J, Chen H Y, Meng Z A, Liu L, Xia Z C, Sinova J, Jungwirth T and Liu Z Q 2022 Nat. Electron. 5 735
[33] You Y F, Chen X Z, Zhou X F, Gu Y D, Zhang R Q, Pan F and Song C 2019 Adv. Electron. Mater. 5 1800818
[34] Higo T, Qu D R, Li Y F, Chien C L, Otani Y and Satoru N 2018 Appl. Phys. Lett. 113 202402
[35] Liu L Q, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601
[36] Zhou J, Shu X Y, Liu Y H, Wang X, Lin W N, Chen S H, Liu L, Xie Q D, Hong T, Yang P, Yan B H, Han X F and Chen J S 2020 Phys. Rev. B 101 184403
[37] Sklenar J, Zhang W, Jungfleisch M B, Jiang W J, Chang H C, Pearson J E, Wu M Z, Ketterson J B and Hoffmann A 2015 Phys. Rev. B 92 174406
[38] Wang Y, Ramaswamy R and H Yang 2018 J. Phys. D: Appl. Phys. 51 273002
[1] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[2] RKKY interaction in helical higher-order topological insulators
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2024, 33(7): 077503.
[3] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[4] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[5] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[6] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[7] Polarity-controllable magnetic skyrmion filter
Xiao-Lin Ai(艾啸林), Hui-Ting Li(李慧婷), Xue-Feng Zhang(张雪枫), Chang-Feng Li(李昌锋), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2024, 33(10): 107502.
[8] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[9] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[10] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[11] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[12] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[13] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[14] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[15] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
No Suggested Reading articles found!