Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 103102    DOI: 10.1088/1674-1056/ad7c30
DATA PAPER Prev   Next  

Fully relativistic energies, transition properties, and lifetimes of lithium-like germanium

Shuang Li(李双)1,2,3, Jing Zhou(周璟)1, Liu-Hong Zhu(朱柳红)1, Xiu-Fei Mei(梅秀菲)1, and Jun Yan(颜君)2,†
1 School of Electrical and Optoelectronic Engineering, West Anhui University, Luan 237012, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 Shanghai EBIT Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China
Abstract  Employing two fully relativistic methods, the multi-reference configuration Dirac-Hartree-Fock (MCDHF) method and the relativistic many-body perturbation theory (RMBPT) method, we report energies and lifetime values for the lowest 35 energy levels of the (1s$^2)nl$ configurations (where the principal quantum number $n = 2$-6 and the angular quantum number $l = 0$,..., $n-1$) of lithium-like germanium (Ge XXX), as well as complete data on the transition wavelengths, radiative rates, absorption oscillator strengths, and line strengths between the levels. Both the allowed (E1) and forbidden (magnetic dipole M1, magnetic quadrupole M2, and electric quadrupole E2) ones are reported. The results from the two methods are consistent with each other and align well with previous accurate experimental and theoretical findings. We assess the overall accuracies of present RMBPT results to be likely the most precise ones to date. The present fully relativistic results should be helpful for soft x-ray laser research, spectral line identification, plasma modeling and diagnosing. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.
Keywords:  multi-reference      Dirac-Hartree-Fock      relativistic many-body perturbation      radiative rate      lifetime  
Received:  08 August 2024      Revised:  12 September 2024      Accepted manuscript online:  18 September 2024
PACS:  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.15.xp (Perturbation theory)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Fund: Project supported by the Research Foundation for Higher Level Talents of West Anhui University (Grant No. WGKQ2021005).
Corresponding Authors:  Jun Yan     E-mail:  yan_jun@iapcm.ac.cn

Cite this article: 

Shuang Li(李双), Jing Zhou(周璟), Liu-Hong Zhu(朱柳红), Xiu-Fei Mei(梅秀菲), and Jun Yan(颜君) Fully relativistic energies, transition properties, and lifetimes of lithium-like germanium 2024 Chin. Phys. B 33 103102

[1] Ullmann J, Andelkovic Z and Brandau C, et al. 2017 Nat. Commun. 8 15484
[2] Karr J P 2017 Nat. Phys. 13 533
[3] Zhang G S, Deng B L, Yang J, Tang K, Meng B and Zhang X Q 2023 At. Data Nucl. Data Tables 149 101547
[4] Skripnikov L V, Schmidt S, Ullmann J, Geppert C, Kraus F, Kresse B, Nortershauser W, Privalov A F, Scheibe B, Shabaev V M, Vogel M and Volotka A V 2018 Phys. Rev. Lett. 120 093001
[5] Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I and Plunien G 2014 Phys. Rev. Lett. 112 253004
[6] Yerokhin V A and Surzhykov A 2018 J. Phys. Chem. Ref. Data 47 023105
[7] Li S, Zhao M, Liu G Q, Hu C B and Pan G Z 2023 Chin. Phys. B 32 103101
[8] Liu X and Zhang J C 2023 J. Korean Phys. Soc. 82 154
[9] Kumar P, Goyal A and Mohan M 2022 Eur. Phys. J. Plus 137 1253
[10] Fontes C J and Zhang H L 2017 At. Data Nucl. Data Tables 113 293
[11] Barzakh A, Andreyev A N, Raison C, et al. 2021 Phys. Rev. Lett. 127 192501
[12] Deng B L, Jiang G and Zhang C Y 2014 At. Data Nucl. Data Tables 100 1337
[13] Aggarwal K M and Keenan F P 2013 At. Data Nucl. Data Tables 99 156
[14] Aggarwal K M and Keenan F P 2012 At. Data Nucl. Data Tables 98 1003
[15] Liang G Y and Badnell N R 2011 Astron. Astrophys. 528 A69
[16] Namba S, Wang J H, Ohiro H, Zhang J W, Kishimoto M, Yamasaki K, Hasegawa N, Dinh T, Ishino M, Higashiguchi T and Nishikino M 2022 Atoms 10 128
[17] Mitra-Kraev U and Del Zanna G 2019 Astron. Astrophys. 628 A134
[18] Neupert W M, Swartz M and Kastner S O 1973 Sol. Phys. 31 171
[19] Boiko V, Faenov A and Pikuz S 1978 J. Quantum Spectrosc. Radiat. Transfer 19 11
[20] Behring W E, Seely J F, Brown C M, Feldman U and Knauer J P 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 531
[21] Hinnov E, the TFTR Operating Team, Denne B and the JET Operating Team 1989 Phys. Rev. A 40 4357
[22] Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X and Liu H Q 2022 Phys. Scr. 97 045604
[23] Epp S W, López-Urrutia J R C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W and Ullrich J 2007 Phys. Rev. Lett. 98 183001
[24] Chen H, Gu M F, Behar E, Brown G V, Kahn S M and Beiersdorfer P 2007 Astrophys. J. Suppl. Ser. 168 319
[25] Yan Z C, Tambasco M and Drake G W F 1998 Phys. Rev. A 57 1652
[26] Li W X, Amarsi A M, Papoulia A, Ekman J and Jönsson P 2021 Mon. Not. R. Astron. Soc. 502 3780
[27] Zhang D H, Zhang F J, Ding X B and Dong C Z 2021 Chin. Phys. B 30 043102
[28] Zeng J L, Li Y J and Yuan J M 2021 J. Quantum Spectrosc. Radiat. Transfer 272 107777
[29] Liu X, Zhang J C and Wang Z W 2019 Results Phys. 12 398
[30] Santana J A, Peña-Cotto E L, Butler E J M, Beiersdorfer P and Brown V G 2019 Astrophys. J. Suppl. Ser. 245 9
[31] Santana J A, Lopez-Dauphin N A and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 234 13
[32] Santana J A, Lopez-Dauphin N A, Butler E J M and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 238 34
[33] Chen Z B, Wang K and Guo X L 2018 J. Quantum Spectrosc. Radiat. Transfer 220 28
[34] El-Maaref A A 2016 J. Quantum Spectrosc. Radiat. Transfer 170 45
[35] Hao L H, Liu J J and Kang X P 2016 Eur. Phys. J. Plus 131 204
[36] Cai J, Yu W W and Zhang N 2014 Chin. Phys. Lett. 31 093101
[37] Gu M F 2005 At. Data Nucl. Data Tables 89 267
[38] Nahar S N and Pradhan A 1999 Astron. Astrophys. Suppl. Ser. 135 347
[39] Fischer C F, Saparov M, Gaigalas G and Godefroid M 1998 At. Data Nucl. Data Tables 70 119
[40] Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513
[41] Vainshtein L A and Safronova U I 1985 Phys. Scr. 31 519
[42] Zhang H L, Sampson D H and Fontes C J 1990 At. Data Nucl. Data Tables 44 31
[43] Johnson W R, Liu Z W and Sapirstein J 1996 At. Data Nucl. Data Tables 64 279
[44] Khatri I, Goyal A, Aggarwal S, Singh A K and Mohan M 2016 Radiat. Phys. Chem. 123 46
[45] Kramida A, Ralchenko Y, Reader J and NIST ASD Team Online 2023 NIST Atomic Spectra Database (version 5.11). Accessed 19 July 2024
[46] Badnell N R 1986 J. Phys. B: At. Mol. Phys. 19 3827
[47] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184
[48] Gu M F 2008 Can. J. Phys. 86 675
[49] Wang K, Si R, Dang W, Jönsson P, Guo X L, Li S, Chen Z B, Zhang H, Long F Y, Liu H T, Li D F, Hutton R, Chen C Y and Yan J 2016 Astrophys. J. Suppl. Ser. 223 3
[50] Wang K, Jönsson P, Ekman J, Gaigalas G, Godefroid M R, Si R, Chen Z B, Li S, Chen C Y and Yan J 2017 Astrophys. J. Suppl. Ser. 229 37
[51] Si R, Li S, Guo X L, Chen Z B, Brage T, Jönsson P, Wang K, Yan J, Chen C Y and Zou Y M 2016 Astrophys. J. Suppl. Ser. 227 16
[52] Wang K, Chen Z B, Si R, Jönsson P, Ekman J, Guo X L, Li S, Long F Y, Dang W, Zhao X H, Hutton R, Chen C Y, Yan J and Yang X 2016 Astrophys. J. Suppl. Ser. 226 14
[53] Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004
[54] Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W X, Li J G, Brage T, Grant I P, Bieroń J and Fischer C F 2022 Atoms 11 7
[55] Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W X, Li J G, Brage T, Grant I P, Bieroń J and Fischer C F 2023 Atoms 11 68
[56] Gu M F, Holczer T, Behar E and Kahn S 2006 Astrophys. J. 641 1227
[57] Gu M F 2007 Astrophys. J. Suppl. Ser. 169 154
[58] Lindgren I J 1974 J. Phys. B: At. Mol. Opt. Phys. 7 2441
[59] Safronova U I, Safronova A S and Beiersdorfer P 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4491
[60] Aggarwal K M, Keenan F P and Lawson K D 2008 At. Data Nucl. Data Tables 94 323
[61] Fischer C F 2009 Phys. Scr. T134 014019
[62] Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215
[63] Wu C Q, Zhao R X, Zhang D H, Zhang M W, Xue Y L, Yu D Y, Dong C Z and Ding X B 2023 Eur. Phys. J. D 77 129
[64] Behring W E, Seely J F, Brown C M, Feldman U and Knauer J P 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 531
[1] Optimal preparation of Bose and Fermi atomic gas mixtures of 87Rb and 40K in a crossed optical dipole trap
Peibo Ding(丁培波), Biao Shan(单标), Yuhang Zhao(赵宇航), Yajing Yang(杨雅婧), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), and Lianghui Huang(黄良辉). Chin. Phys. B, 2024, 33(6): 063402.
[2] Stable photocurrent—voltage characteristics of perovskite single crystal detectors obtained by pulsed bias
Xin Liu(刘新), Zhi-Long Chen(陈之龙), Hu Wang(王虎), Wen-Qing Zhang(张雯清), Hao Dong(董昊), Peng-Xiang Wang(王鹏祥), and Yu-Chuan Shao(邵宇川). Chin. Phys. B, 2024, 33(4): 048101.
[3] Research of caged dynamics of clusters center atoms in Pd82Si18 amorphous alloy
Yong-He Deng(邓永和), Bei Chen(陈贝), Qing-Hua Qi(祁清华), Bing-Bing Li(李兵兵), Ming Gao(高明), Da-Dong Wen(文大东), Xiao-Yun Wang(王小云), and Ping Peng(彭平). Chin. Phys. B, 2024, 33(4): 047102.
[4] Strain tunable excitonic optical properties in monolayer Ga2O3
Hao-Lei Cui(崔浩磊), Zhen Quan(权真), and Shu-Dong Wang(王舒东). Chin. Phys. B, 2024, 33(10): 107104.
[5] Excitonic optical properties in monolayer SnP2S6
Peng-Yuan Chen(陈鹏远), Zhen Quan(权真), and Shu-Dong Wang(王舒东). Chin. Phys. B, 2024, 33(10): 107105.
[6] Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation
Ruijun Zhang(张锐军), Rongdun Hong(洪荣墩), Jingrui Han(韩景瑞), Hungkit Ting(丁雄杰), Xiguang Li(李锡光), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Deyi Fu(傅德颐), Dingqu Lin(林鼎渠), Mingkun Zhang(张明昆), Shaoxiong Wu(吴少雄),Yuning Zhang(张宇宁), Zhengyun Wu(吴正云), and Feng Zhang(张峰). Chin. Phys. B, 2023, 32(6): 067205.
[7] Molecular fluorescence significantly enhanced by gold nanoparticles@zeolitic imidazolate framework-8
Yuyi Zhang(张钰伊), Yajie Bian(卞亚杰), Wei Zhang(张炜), Yiting Liu(刘易婷), Xiaolei Zhang(张晓磊),Mengdi Chen(陈梦迪), Bingwen Hu(胡炳文), and Qingyuan Jin(金庆原). Chin. Phys. B, 2023, 32(5): 054208.
[8] Benchmarking calculations of excitation energies and transition properties with spectroscopic accuracy of highly charged ions used for the fusion plasma and astrophysical plasma
Chunyu Zhang(张春雨), Kai Wang(王凯), Ran Si(司然), Jinqing Li(李金晴), Changxian Song(宋昌仙), Sijie Wu(吴思捷), Bishuang Yan(严碧霜), and Chongyang Chen(陈重阳). Chin. Phys. B, 2023, 32(11): 113102.
[9] Low-lying electronic states of osmium monoxide OsO
Wen Yan(严汶) and Wenli Zou(邹文利). Chin. Phys. B, 2023, 32(11): 113101.
[10] Fully relativistic many-body perturbation energies, transition properties, and lifetimes of lithium-like iron Fe XXIV
Shuang Li(李双), Min Zhao(赵敏), Guo-Qing Liu(刘国庆), Chang-Bao Hu(胡昌宝), and Guo-Zhu Pan(潘国柱). Chin. Phys. B, 2023, 32(10): 103101.
[11] Lifetime measurement of the 3d9 2D3/2 metastable level in Mo15+ at an electron beam ion trap
Jialin Liu(刘佳林), Yintao Wang(王银涛), Bingsheng Tu(屠秉晟), Liangyu Huang(黄良玉), Ran Si(司然), Jiguang Li(李冀光), Mingwu Zhang(张明武), Yunqing Fu(傅云清), Yaming Zou(邹亚明), and Ke Yao(姚科). Chin. Phys. B, 2023, 32(10): 103201.
[12] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[13] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[14] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[15] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
No Suggested Reading articles found!