|
|
Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses |
Si-Qi Zhang(张思琪)1,2, Jun Zhang(张军)1, Xin-Yu Hao(郝欣宇)1, Jing Guo(郭静)1,†, Aihua Liu(刘爱华)1,‡, and Xue-Shen Liu(刘学深)1,§ |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 School of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Molecular-frame photoelectron momentum distributions (MF-PMDs) have been studied for imaging molecular structures. We investigate the MF-PMDs of CO$_{2}$ molecules exposed to circularly polarized (CP) attosecond laser pulses by solving the time-dependent Schrödinger equations based on the single-active-electron approximation frames. Results show that high-frequency photons lead to photoelectron diffraction patterns, indicating molecular orbitals. These diffraction patterns can be illustrated by the ultrafast photoionization models. However, for the driving pulses with 30 nm, a deviation between MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because the Coulomb effect strongly influences the molecular photoionization. Meanwhile, the MF-PMDs rotate in the same direction as the helicity of driving laser pulses. Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superposition of those in the parallel and perpendicular linearly polarized cases. The simulations efficiently visualize molecular orbital geometries and structures by ultrafast photoelectron imaging. Furthermore, we determine the contribution of HOMO and HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.
|
Received: 18 April 2024
Revised: 16 July 2024
Accepted manuscript online: 06 August 2024
|
PACS:
|
33.80.-b
|
(Photon interactions with molecules)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974007, 12074146, 12074142, 61575077, 12374265, 11947243, 91850114, and 11774131) and the Natural Science Foundation of Jilin Province of China (Grant No. 20220101016JC). |
Corresponding Authors:
Jing Guo, Aihua Liu, Xue-Shen Liu
E-mail: gjing@jlu.edu.cn;aihualiu@jlu.edu.cn;liuxs@jlu.edu.cn
|
Cite this article:
Si-Qi Zhang(张思琪), Jun Zhang(张军), Xin-Yu Hao(郝欣宇), Jing Guo(郭静), Aihua Liu(刘爱华), and Xue-Shen Liu(刘学深) Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses 2024 Chin. Phys. B 33 103301
|
[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545 [2] Messina F, Bräm O, Cannizzo A and Chergui M 2013 Nat. Commun. 4 2119 [3] Wang L, Wang X, Xiao F, Wang J, Tao W, Zhang D and Zhao Z 2023 Chin. Phys. Lett. 40 113201 [4] Zhao J, Liu J, Wang X, Yuan J and Zhao Z 2022 Chin. Phys. Lett. 39 123201 [5] Tanaka H, Yabashi M, Asaka T, et al. 2012 Nat. Photon. 6 540 [6] Xu J, Blaga C I, Agostini P and DiMauro L F 2016 J. Phys. B: At. Mol. Opt. Phys. 49 112001 [7] Nan Q W, Wang C, Yu X Y, Zhao X, Cheng Y, Gong M, Liu X J, Kimberg V and Zhang S B 2023 Chin. Phys. Lett. 40 093201 [8] Küpper J, Stern S, Holmegaard L, et al. 2014 Phys. Rev. Lett. 112 083002 [9] Jiang Y H, Rudenko A, Plésiat E, et al. 2010 Phys. Rev. A 81 021401 [10] Underwood J G and Reid K L 2000 J. Chem. Phys. 113 1067 [11] Pullen M G, Wolter B, Le A T, et al. 2015 Nat. Commun. 6 7262 [12] Odenweller M, Takemoto N, Vredenborg A, et al. 2011 Phys. Rev. Lett. 107 143004 [13] Lei Z X, Xu Q Y, Yang Z J, He Y L and Guo J 2022 Chin. Phys. B 31 063202 [14] Yang H, Liu X, Zhu F, Jiao L and Liu A 2024 Chin. Phys. B 33 013303 [15] Mauritsson J, Remetter T, Swoboda M, et al. 2010 Phys. Rev. Lett. 105 053001 [16] Zuo T, Bandrauk A D and Corkum P B 1996 Chem. Phys. Lett. 259 313 [17] Meckel M, Comtois D, Zeidler D, et al. 2008 Science 320 1478 [18] Peters M, Nguyen-Dang T T, Charron E, Keller A and Atabek O 2012 Phys. Rev. A 85 053417 [19] Yuan K J, Lu H and Bandrauk A D 2011 Phys. Rev. A 83 043418 [20] Dou Y, Fang Y, Ge P and Liu Y 2023 Chin. Phys. Lett. 40 033201 [21] Geng L, Liang H and Peng L Y 2022 Chin. Phys. Lett. 39 044203 [22] Peters M, Nguyen-Dang T T, Cornaggia C, Saugout S, Charron E, Keller A and Atabek O 2011 Phys. Rev. A 83 051403 [23] Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003 [24] Pengel D, Kerbstadt S, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. A 96 043426 [25] Ma M Y, Wang J P, Jing W Q, Guan Z, Jiao Z H, Wang G L, Chen J H and Zhao S F 2021 Opt. Express 29 33245 [26] Djiokap J M N, Meremianin A V, Manakov N L, Hu S X, Madsen L B and Starace A F 2017 Phys. Rev. A 96 013405 [27] Skruszewicz S, Tiggesbäumker J, Meiwes-Broer K H, Arbeiter M, Fennel T and Bauer D 2015 Phys. Rev. Lett. 115 043001 [28] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903 [29] van der Zwan E V and Lein M 2010 Phys. Rev. A 82 033405 [30] Lai X and Figueira de Morisson Faria C 2013 Phys. Rev. A 88 013406 [31] Hu S, Chen J, Hao X and Li W 2016 Phys. Rev. A 93 023424 [32] Ilchen M, Glaser L, Scholz F, et al. 2014 Phys. Rev. Lett. 112 023001 [33] Ansari Z, Böttcher M, Manschwetus B, et al. 2008 New J. Phys. 10 093027 [34] Kunitski M, Eicke N, Huber P, et al. 2019 Nat. Commun. 10 1 [35] Okunishi M, Itaya R, Shimada K, et al. 2009 Phys. Rev. Lett. 103 043001 [36] Busuladžić M, Gazibegović-Busuladžić A, Milošević D B and Becker W 2008 Phys. Rev. Lett. 100 203003 [37] Hässig M, Altwegg K, Balsiger H, et al. 2015 Science 347 aaa0276 [38] Zhu X, Liu X, Li Y, Qin M, Zhang Q, Lan P and Lu P 2015 Phys. Rev. A 91 043418 [39] Hu S L, Zhao Z X and Shi T Y 2013 Chin. Phys. Lett. 30 103103 [40] Li Y, Qin M, Zhu X, Zhang Q, Lan P and Lu P 2015 Opt. Express 23 10687 [41] https://webbook.nist.gov/chemistry/ [42] Feit M D, Fleck J A and Steiger A 1982 J. Comput. Phys. 47 412 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|