Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 103301    DOI: 10.1088/1674-1056/ad6b81
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses

Si-Qi Zhang(张思琪)1,2, Jun Zhang(张军)1, Xin-Yu Hao(郝欣宇)1, Jing Guo(郭静)1,†, Aihua Liu(刘爱华)1,‡, and Xue-Shen Liu(刘学深)1,§
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 School of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  Molecular-frame photoelectron momentum distributions (MF-PMDs) have been studied for imaging molecular structures. We investigate the MF-PMDs of CO$_{2}$ molecules exposed to circularly polarized (CP) attosecond laser pulses by solving the time-dependent Schrödinger equations based on the single-active-electron approximation frames. Results show that high-frequency photons lead to photoelectron diffraction patterns, indicating molecular orbitals. These diffraction patterns can be illustrated by the ultrafast photoionization models. However, for the driving pulses with 30 nm, a deviation between MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because the Coulomb effect strongly influences the molecular photoionization. Meanwhile, the MF-PMDs rotate in the same direction as the helicity of driving laser pulses. Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superposition of those in the parallel and perpendicular linearly polarized cases. The simulations efficiently visualize molecular orbital geometries and structures by ultrafast photoelectron imaging. Furthermore, we determine the contribution of HOMO and HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.
Keywords:  molecular-frame photoelectron momentum distributions      single-active-electron approximation frames      ultrafast photoionization models  
Received:  18 April 2024      Revised:  16 July 2024      Accepted manuscript online:  06 August 2024
PACS:  33.80.-b (Photon interactions with molecules)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974007, 12074146, 12074142, 61575077, 12374265, 11947243, 91850114, and 11774131) and the Natural Science Foundation of Jilin Province of China (Grant No. 20220101016JC).
Corresponding Authors:  Jing Guo, Aihua Liu, Xue-Shen Liu     E-mail:  gjing@jlu.edu.cn;aihualiu@jlu.edu.cn;liuxs@jlu.edu.cn

Cite this article: 

Si-Qi Zhang(张思琪), Jun Zhang(张军), Xin-Yu Hao(郝欣宇), Jing Guo(郭静), Aihua Liu(刘爱华), and Xue-Shen Liu(刘学深) Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses 2024 Chin. Phys. B 33 103301

[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Messina F, Bräm O, Cannizzo A and Chergui M 2013 Nat. Commun. 4 2119
[3] Wang L, Wang X, Xiao F, Wang J, Tao W, Zhang D and Zhao Z 2023 Chin. Phys. Lett. 40 113201
[4] Zhao J, Liu J, Wang X, Yuan J and Zhao Z 2022 Chin. Phys. Lett. 39 123201
[5] Tanaka H, Yabashi M, Asaka T, et al. 2012 Nat. Photon. 6 540
[6] Xu J, Blaga C I, Agostini P and DiMauro L F 2016 J. Phys. B: At. Mol. Opt. Phys. 49 112001
[7] Nan Q W, Wang C, Yu X Y, Zhao X, Cheng Y, Gong M, Liu X J, Kimberg V and Zhang S B 2023 Chin. Phys. Lett. 40 093201
[8] Küpper J, Stern S, Holmegaard L, et al. 2014 Phys. Rev. Lett. 112 083002
[9] Jiang Y H, Rudenko A, Plésiat E, et al. 2010 Phys. Rev. A 81 021401
[10] Underwood J G and Reid K L 2000 J. Chem. Phys. 113 1067
[11] Pullen M G, Wolter B, Le A T, et al. 2015 Nat. Commun. 6 7262
[12] Odenweller M, Takemoto N, Vredenborg A, et al. 2011 Phys. Rev. Lett. 107 143004
[13] Lei Z X, Xu Q Y, Yang Z J, He Y L and Guo J 2022 Chin. Phys. B 31 063202
[14] Yang H, Liu X, Zhu F, Jiao L and Liu A 2024 Chin. Phys. B 33 013303
[15] Mauritsson J, Remetter T, Swoboda M, et al. 2010 Phys. Rev. Lett. 105 053001
[16] Zuo T, Bandrauk A D and Corkum P B 1996 Chem. Phys. Lett. 259 313
[17] Meckel M, Comtois D, Zeidler D, et al. 2008 Science 320 1478
[18] Peters M, Nguyen-Dang T T, Charron E, Keller A and Atabek O 2012 Phys. Rev. A 85 053417
[19] Yuan K J, Lu H and Bandrauk A D 2011 Phys. Rev. A 83 043418
[20] Dou Y, Fang Y, Ge P and Liu Y 2023 Chin. Phys. Lett. 40 033201
[21] Geng L, Liang H and Peng L Y 2022 Chin. Phys. Lett. 39 044203
[22] Peters M, Nguyen-Dang T T, Cornaggia C, Saugout S, Charron E, Keller A and Atabek O 2011 Phys. Rev. A 83 051403
[23] Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003
[24] Pengel D, Kerbstadt S, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. A 96 043426
[25] Ma M Y, Wang J P, Jing W Q, Guan Z, Jiao Z H, Wang G L, Chen J H and Zhao S F 2021 Opt. Express 29 33245
[26] Djiokap J M N, Meremianin A V, Manakov N L, Hu S X, Madsen L B and Starace A F 2017 Phys. Rev. A 96 013405
[27] Skruszewicz S, Tiggesbäumker J, Meiwes-Broer K H, Arbeiter M, Fennel T and Bauer D 2015 Phys. Rev. Lett. 115 043001
[28] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903
[29] van der Zwan E V and Lein M 2010 Phys. Rev. A 82 033405
[30] Lai X and Figueira de Morisson Faria C 2013 Phys. Rev. A 88 013406
[31] Hu S, Chen J, Hao X and Li W 2016 Phys. Rev. A 93 023424
[32] Ilchen M, Glaser L, Scholz F, et al. 2014 Phys. Rev. Lett. 112 023001
[33] Ansari Z, Böttcher M, Manschwetus B, et al. 2008 New J. Phys. 10 093027
[34] Kunitski M, Eicke N, Huber P, et al. 2019 Nat. Commun. 10 1
[35] Okunishi M, Itaya R, Shimada K, et al. 2009 Phys. Rev. Lett. 103 043001
[36] Busuladžić M, Gazibegović-Busuladžić A, Milošević D B and Becker W 2008 Phys. Rev. Lett. 100 203003
[37] Hässig M, Altwegg K, Balsiger H, et al. 2015 Science 347 aaa0276
[38] Zhu X, Liu X, Li Y, Qin M, Zhang Q, Lan P and Lu P 2015 Phys. Rev. A 91 043418
[39] Hu S L, Zhao Z X and Shi T Y 2013 Chin. Phys. Lett. 30 103103
[40] Li Y, Qin M, Zhu X, Zhang Q, Lan P and Lu P 2015 Opt. Express 23 10687
[41] https://webbook.nist.gov/chemistry/
[42] Feit M D, Fleck J A and Steiger A 1982 J. Comput. Phys. 47 412
[1] Performance optimization of a SERF atomic magnetometer based on flat-top light beam
Ziqi Yuan(袁子琪), Junjian Tang(唐钧剑), Shudong Lin(林树东), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2024, 33(6): 060703.
[2] Elliptically polarized high-order harmonic generation of Ar atom in an intense laser field
Jie Hu(胡杰), Yi-Chen Wang(王一琛), Qiu-Shuang Jing(景秋霜), Wei Jiang(姜威), Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Bo Xiao(肖礴), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2024, 33(5): 054208.
[3] Electron vortices generation of photoelectron of H2+ by counter-rotating circularly polarized attosecond pulses
Haojing Yang(杨浩婧), Xiaoyu Liu(刘晓煜), Fengzheng Zhu(朱风筝), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2024, 33(1): 013303.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2022, 31(10): 103301.
[6] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[7] Direct Coulomb explosion of N2O2+ induced by monochromatic extreme ultraviolet photons at 38.5 eV
Min Zhang(张敏), B Najjari, Bang Hai(海帮), Dong-Mei Zhao(赵冬梅), Jian-Ting Lei(雷建廷), Da-Pu Dong(董达谱), Shao-Feng Zhang(张少锋), Xin-Wen Ma(马新文). Chin. Phys. B, 2020, 29(6): 063302.
[8] Field-free molecular orientation steered by combination of super-Gaussian and THz half-cycle laser pulses
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(11): 113301.
[9] Intrinsic transverse relaxation mechanisms of polarized alkali atoms enclosed in radio-frequency magnetometer cell
Yang-Ying Fu(傅杨颖), Jie Yuan(袁杰). Chin. Phys. B, 2019, 28(9): 098504.
[10] Quantum interference of multi-orbital effects in high-harmonic spectra from aligned carbon dioxide and nitrous oxide
Hong-Jing Liang(梁红静), Xin Fan(范鑫), Shuang Feng(冯爽), Li-Yu Shan(单立宇), Qing-Hua Gao(高庆华), Bo Yan(闫博), Ri Ma(马日), Hai-Feng Xu(徐海峰). Chin. Phys. B, 2019, 28(9): 094207.
[11] Influence factor analysis of field-free molecular orientation
Jing-Song Liu(刘劲松), Qi-Yuan Cheng(程起元), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2018, 27(3): 033301.
[12] Field-free molecular orientation enhanced by tuning the intensity ratio of a three-color laser field
Zhi-Yuan Huang(黄志远), Ding Wang(王丁), Lang Zheng(郑浪), Wen-Kai Li(黎文开), Rui-Rui Zhao(赵睿睿), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2017, 26(5): 054209.
[13] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
[14] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
[15] Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame
Shuang Chen(陈爽), Tie Su(苏铁), Yao-Bang Zheng(郑尧邦), Li Chen(陈力), Ting-Xu Liu(刘亭序), Ren-Bing Li(李仁兵), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(6): 060703.
No Suggested Reading articles found!