Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107303    DOI: 10.1088/1674-1056/ad711f
RAPID COMMUNICATION Prev   Next  

Role of self-assembled molecules' anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells

Xiaoyu Wang(王啸宇)1,†, Muhammad Faizan2,†, Kun Zhou(周琨)2, Xinjiang Wang(王新江)2,‡, Yuhao Fu(付钰豪)1,§, and Lijun Zhang(张立军)2,¶
1 Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
Abstract  Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication, low hysteresis effects, and high stability. Despite these advantages, their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface, particularly at the buried interface between the perovskite and transparent conductive oxide (TCO). Recent efforts in the perovskite community have focused on designing novel self-assembled molecules (SAMs) to improve the quality of the buried interface. However, a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces. This understanding is crucial, particularly in terms of identifying chemically active anchoring groups. In this study, we used the star SAM ([2-(9H-carbazol-9-yl)ethyl] phosphonic acid) as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface. Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages. These groups fulfill three key criteria: they provide the greatest potential for defect passivation, exhibit stable adsorption with defects, and exert significant regulatory effects on interface dipoles. Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties, which effectively neutralize local charges near defects. Among various defect types, iodine vacancies are the easiest to passivate, whereas iodine-substituted lead defects are the most challenging to passivate. Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs, contributing to the ongoing development of more efficient inverted perovskite solar cells.
Keywords:  inverted perovskite solar cell      defect passivation      self-assembled molecule      interface engineering      first-principles calculation  
Received:  28 July 2024      Revised:  19 August 2024      Accepted manuscript online:  20 August 2024
PACS:  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  81.65.Rv (Passivation)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  31.30.jp (Electron electric dipole moment)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62321166653, 22090044, and 12350410372).
Corresponding Authors:  Xinjiang Wang, Yuhao Fu, Lijun Zhang     E-mail:  xinjiang_wang@jlu.edu.cn;fuyuhaoy@gmail.com;lijun_zhang@jlu.edu.cn

Cite this article: 

Xiaoyu Wang(王啸宇), Muhammad Faizan, Kun Zhou(周琨), Xinjiang Wang(王新江), Yuhao Fu(付钰豪), and Lijun Zhang(张立军) Role of self-assembled molecules' anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells 2024 Chin. Phys. B 33 107303

[1] Yao Y, Cheng C, Zhang C, Hu H, Wang K and De Wolf S 2022 Advanced Materials 34 2203794
[2] Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q, Bati A S R, Wan H, Wang Z, Zeng L, Wang J, Serles P, Liu Y, Teale S, Liu Y, Saidaminov M I, Li M, Rolston N, Hoogland S, Filleter T, Kanatzidis M G, Chen B, Ning Z and Sargent E H 2024 Science 384 189
[3] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J and Zhu R 2018 Science 360 1442
[4] Meng L, You J, Guo T F and Yang Y 2016 Acc. Chem. Res. 49 155
[5] Li M, Liu M, Qi F, Lin F R and Jen A K Y 2024 Chem. Rev. 124 2138
[6] Zhang S, Ye F, Wang X, Chen R, Zhang H, Zhan L, Jiang X, Li Y, Ji X, Liu S, Yu M, Yu F, Zhang Y, Wu R, Liu Z, Ning Z, Neher D, Han L, Lin Y, Tian H, Chen W, Stolterfoht M, Zhang L, Zhu W H and Wu Y 2023 Science 380 404
[7] Wang G, Chen K, Cheng L, Wang D, Meng F and Xiang W 2024 Solar RRL 8 2300996
[8] Rombach F M, Haque S A and Macdonald T J 2021 Energy Environ. Sci. 14 5161
[9] Park H, Chaurasiya R, Jeong B H, Sakthivel P and Park H J 2021 Advanced Photonics Research 2 2000178
[10] Magomedov A, Al-Ashouri A, Kasparavičius E, Strazdaite S, Niaura G, Jošt M, Malinauskas T, Albrecht S and Getautis V 2018 Adv. Energy Mater. 8 1801892
[11] Al-Ashouri A, Magomedov A, Roß M, Jošt M, Talaikis M, Chistiakova G, Bertram T, Márquez J A, Köhnen E, Kasparavičius E, Levcenco S, Gil-Escrig L, Hages C J, Schlatmann R, Rech B, Malinauskas T, Unold T, Kaufmann C A, Korte L, Niaura G, Getautis V and Albrecht S 2019 Energy Environ. Sci. 12 3356
[12] Yalcin E, Can M, Rodriguez-Seco C, Aktas E, Pudi R, Cambarau W, Demic S and Palomares E 2019 Energy Environ. Sci. 12 230
[13] Wang S, Guo H and Wu Y 2023 Mater. Futures 2 012105
[14] Reig M, Bagdziunas G, Volyniuk D, Grazulevicius J V and Velasco D 2017 Phys. Chem. Chem. Phys. 19 6721
[15] Yi Z, Li X, Xiong Y, Shen G, Zhang W, Huang Y, Jiang Q, Ng X R, Luo Y, Zheng J, Leong W L, Fu F, Bu T and Yang J 2024 Interdisciplinary Materials 3 203
[16] Park S M, Wei M, Xu J, Atapattu H R, Eickemeyer F T, Darabi K, Grater L, Yang Y, Liu C, Teale S, Chen B, Chen H, Wang T, Zeng L, Maxwell A, Wang Z, Rao K R, Cai Z, Zakeeruddin S M, Pham J T, Risko C M, Amassian A, Kanatzidis M G, Graham K R, Grätzel M and Sargent E H 2023 Science 381 209
[17] Li G, Su Z, Canil L, Hughes D, Aldamasy M H, Dagar J, Trofimov S, Wang L, Zuo W, Jerónimo-Rendon J J, Byranvand M M, Wang C, Zhu R, Zhang Z, Yang F, Nasti G, Naydenov B, Tsoi W C, Li Z, Gao X, Wang Z, Jia Y, Unger E, Saliba M, Li M and Abate A 2023 Science 379 399
[18] Li L, Wang Y, Wang X, Lin R, Luo X, Liu Z, Zhou K, Xiong S, Bao Q, Chen G, Tian Y, Deng Y, Xiao K, Wu J, Saidaminov M I, Lin H, Ma C Q, Zhao Z, Wu Y, Zhang L and Tan H 2022 Nat. Energy 7 708
[19] Park S M, Wei M, Lempesis N, Yu W, Hossain T, Agosta L, Carnevali V, Atapattu H R, Serles P, Eickemeyer F T, Shin H, Vafaie M, Choi D, Darabi K, Jung E D, Yang Y, Kim D B, Zakeeruddin S M, Chen B, Amassian A, Filleter T, Kanatzidis M G, Graham K R, Xiao L, Rothlisberger U, Grätzel M and Sargent E H 2023 Nature 624 289
[20] Li Z, Sun X, Zheng X, Li B, Gao D, Zhang S, Wu X, Li S, Gong J, Luther J M, Li Z and Zhu Z 2023 Science 382 284
[21] Aydin E, Ugur E, Yildirim B K, Allen T G, Dally P, Razzaq A, Cao F, Xu L, Vishal B, Yazmaciyan A, Said A A, Zhumagali S, Azmi R, Babics M, Fell A, Xiao C and De Wolf S 2023 Nature 623 732
[22] Wang G, Zheng J, Duan W, Yang J, Mahmud M A, Lian Q, Tang S, Liao C, Bing J, Yi J, Leung T L, Cui X, Chen H, Jiang F, Huang Y, Lambertz A, Jankovec M, Topič M, Bremner S, Zhang Y Z, Cheng C, Ding K and Ho-Baillie A 2023 Joule 7 2583
[23] Li M, Gao H, Yu L, Tang S, Peng Y, Zheng C, Xu L, Tao Y, Chen R and Huang W 2021 Small 17 2102090
[24] Abbas M, Cai B, Hu J, Guo F, Mai Y and Yuan X C 2021 ACS Appl. Mater. Interfaces 13 46566
[25] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Kresse G and Furthmüller J 1996 Computational Materials Science 6 15
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Zhao X G, Zhou K, Xing B, Zhao R, Luo S, Li T, Sun Y, Na G, Xie J, Yang X, Wang X, Wang X, He X, Lv J, Fu Y and Zhang L 2021 Science Bulletin 66 1973
[31] Luo S, Xing B, Faizan M, Xie J, Zhou K, Zhao R, Li T, Wang X, Fu Y, He X, Lv J and Zhang L 2022 J. Phys. Chem. A 126 4300
[32] Kırbıyık Ç, Akın Kara D, Kara K, Büyükçelebi S, Yi git M Z, Can M and Kuş M 2019 Applied Surface Science 479 177
[33] Wirth M J, Fairbank R W P and Fatunmbi H O 1997 Science 275 44
[34] Singh S, Abdur R, Nam H S, Kim J H, Lee S M, Lee H and Lee J 2023 Electron. Mater. Lett. 19 267
[35] Yee C, Kataby G, Ulman A, Prozorov T, White H, King A, Rafailovich M, Sokolov J and Gedanken A 1999 Langmuir 15 7111
[36] Laibinis P E, Hickman J J, Wrighton M S and Whitesides G M 1989 Science 245 845
[37] Chen Y, Li B, Zhong W, Luo D, Li G, Zhou C, Lan L and Chen R 2022 IEEE Transactions on Electron Devices 69 160
[38] Vericat C, Vela M E, Benitez G, Carro P and Salvarezza R C 2010 Chem. Soc. Rev. 39 1805
[39] Liu N and Yam C 2018 Physical Chemistry Chemical Physics 20 6800
[40] Oner S M, Sezen E, Yordanli M S, Karakoc E, Deger C and Yavuz I 2022 J. Phys. Chem. Lett. 13 324
[41] Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903
[42] Alkauskas A, Broqvist P and Pasquarello A 2011 Physica Status Solidi (b) 248 775
[43] Ismer L, Janotti A and Van de Walle C G 2011 J. Alloy. Compd. 509 S658
[44] Chen W and Pasquarello A 2015 J. Phys.: Condens. Matter 27 133202
[45] Godding J S W, Ramadan A J, Lin Y H, Schutt K, Snaith H J and Wenger B 2019 Joule 3 2716
[46] Fei C, Li N, Wang M, Wang X, Gu H, Chen B, Zhang Z, Ni Z, Jiao H, Xu W, Shi Z, Yan Y and Huang J 2023 Science 380 823
[47] Fürer S O, Rietwyk K J, Pulvirenti F, McMeekin D P, Surmiak M A, Raga S R, Mao W, Lin X, Hora Y, Wang J, Shi Y, Barlow S, Ginger D S, Marder S R and Bach U 2023 ACS Appl. Energy Mater. 6 667
[48] Guo H, Liu C, Hu H, Zhang S, Ji X, Cao X M, Ning Z, Zhu W H, Tian H and Wu Y 2023 National Science Review 10 nwad057
[49] Shi Y, Zhang H, Tong X, Hou X, Li F, Du Y, Wang S, Zhang Q, Liu P and Zhao X 2021 Solar RRL 5 2100128
[50] Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y and Padture N P 2021 Science 372 618
[51] Lu H, Zhuang J, Ma Z, Deng Y, Wang Q, Guo Z, Zhao S and Li H 2019 Materials Science in Semiconductor Processing 97 21
[52] Kırbıyık Ç, Can M and Kuş M 2020 Materials Science in Semiconductor Processing 107 104860
[53] Xu J, Chen H, Grater L, Liu C, Yang Y, Teale S, Maxwell A, Mahesh S, Wan H, Chang Y, Chen B, Rehl B, Park S M, Kanatzidis M G and Sargent E H 2023 Nat. Mater. 22 1507
[1] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[2] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2(X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[3] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[4] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[5] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[6] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[7] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[8] Determining Hubbard U of VO2 by the quasi-harmonic approximation
Longjuan Kong(孔龙娟), Yuhang Lu(陆雨航), Xinying Zhuang(庄新莹), Zhiyong Zhou(周志勇), and Zhenpeng Hu(胡振芃). Chin. Phys. B, 2024, 33(1): 016302.
[9] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[10] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[11] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[12] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[13] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[14] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[15] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
No Suggested Reading articles found!