CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strain tunable excitonic optical properties in monolayer Ga2O3 |
Hao-Lei Cui(崔浩磊), Zhen Quan(权真), and Shu-Dong Wang(王舒东)† |
School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China |
|
|
Abstract Two-dimensional (2D) Ga$_{2}$O$_{3}$ has been confirmed to be a stable structure with five atomic layer thickness configuration. In this work, we study the quasi-particle electronic band structures and then access the excitonic optical properties through solving the Bethe-Salpeter equation (BSE). The results reveal that the exciton dominates the optical absorption in the visible light region with the binding energy as large as $\sim 1.0$ eV, which is highly stable at room temperature. Importantly, both the dominant absorption P$_{1}$ and P$_{2}$ peaks are optically bright without dark exciton between them, and thus is favorable for luminescence process. The calculated radiative lifetime of the lowest-energy exciton is 2.0$\times10^{-11}$ s at 0 K. Furthermore, the radiative lifetime under $+4$% tensile strain is one order of magnitude shorter than that of the strain-free case, while it is less insensitive under the compressive strain. Our findings set the stage for future theoretical and experimental investigation on monolayer Ga$_{2}$O$_{3}$.
|
Received: 08 July 2024
Revised: 24 August 2024
Accepted manuscript online: 29 August 2024
|
PACS:
|
71.35.-y
|
(Excitons and related phenomena)
|
|
71.35.Cc
|
(Intrinsic properties of excitons; optical absorption spectra)
|
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
73.43.Cd
|
(Theory and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12064032). |
Corresponding Authors:
Shu-Dong Wang
E-mail: sdwang@imu.edu.cn
|
Cite this article:
Hao-Lei Cui(崔浩磊), Zhen Quan(权真), and Shu-Dong Wang(王舒东) Strain tunable excitonic optical properties in monolayer Ga2O3 2024 Chin. Phys. B 33 107104
|
[1] Orita M, Ohta H, Hirano M and Hosono H 2000 Appl. Phys. Lett. 77 4166 [2] Kohn J, Katz G and Broder J D 1956 Am. Mineral. 42 398 [3] Saurat M and Revcolevschi A 1971 Rev. Int. Hautes. Refract. 8 291 [4] He H, Blanco M A and Pandey R 2006 Appl. Phys. Lett. 88 261904 [5] He H, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rerat M 2006 Phys. Rev. B 74 195123 [6] Peelaers H and Van de Walle C G 2017 Phys. Rev. B 96 081409 [7] Liu Y, Wang P, Yang T, Wu Q, Yang Y T and Zhang Z Y 2022 Chin. Phys. B 31 117305 [8] Xi Z Y, Yang L L, Shu L C, Zhang M L, Li S, Shi L, Liu Z, Guo Y F and Tang W H 2023 Chin. Phys. B 32 088502 [9] Galazka Z 2018 Semicond. Sci. Technol. 33 113001 [10] Von Wenckstern H 2017 Adv. Electron. Mater. 3 1600350 [11] Kim M, Seo J H, Singisetti U and Ma Z 2017 J. Mater. Chem. C 5 8338 [12] Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I and Delaunay J J 2010 Adv. Funct. Mater. 20 3972 [13] Jin S, Wang X, Wang X, Ju M, Shen S, Liang W, Zhao Y, Feng Z, Playford H Y, Walton R I and Li C 2015 J. Phys. Chem. C 119 18221 [14] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 [15] Zhou H, Maize K, Qiu G, Shakouri A and Ye P D 2017 Appl. Phys. Lett. 111 092102 [16] Kwon Y, Lee G, Oh S, Kim J H, Pearton S J and Ren F 2017 Appl. Phys. Lett. 110 131901 [17] Dong L, Zhou S, Gong L, Wang W, Zhang L, Yang C, Yu J and Liu W 2020 J. Mater. Chem. C 8 12551 [18] Barman S K and Huda M N 2019 Phys. Status Solidi RRL 13 1800554 [19] Zavabeti A, Ou J Z, Carey B J, Syed N, Orrell-Trigg R, Mayes E L H, Xu C, Kavehei O, O’Mullane A P, Kaner R B, Kalantar-zadeh K and Daeneke T 2017 Science 358 332 [20] Chandiran A K, Tetreault N, Humphry-Baker R, Kessler F, Baranoff E, Yi C, Nazeeruddin M K and Grätzel M 2012 Nano Lett. 12 3941 [21] Zhang T, Li Y, Zhang Y, Feng Q, Ning J, Zhang C, Zhang J and Hao Y 2021 J. Alloys Compd. 859 157810 [22] Zhao J, Byggmästar J, Zhang Z, Djurabekova F, Nordlund K and Hua M 2021 Phys. Rev. B 104 054107 [23] Liao Y, Zhang Z, Gao Z, Qian Q and Hua M 2020 ACS Appl. Mater. Interfaces 12 30659 [24] Zhao J, Wang X, Chen H, Zhang Z and Hua M 2022 Chem. Mater. 34 3648 [25] Zhao J, Huang X, Yin Y, Liao Y, Mo H, Qian Q, Guo Y, Chen X, Zhang Z and Hua M 2021 J. Phys. Chem. Lett. 12 5813 [26] Deng Z 2022 Phys. Chem. Chem. Phys. 24 13671 [27] Jin C, Tang X, Sun Q, Mu C, Krasheninnikov A V and Kou L 2024 J. Phys. Chem. Lett. 15 2650 [28] Zheng Y, Tang X, Wang W, Jin L and Li G 2021 Adv. Funct. Mater. 31 2008307 [29] Liu H F, Antwi K K A, Yakovlev N L, Tan H R, Ong L T, Chua S J and Chi D Z 2014 ACS Appl. Mater. Interfaces 6 3501 [30] Zhou J, Zeng Q, Lv D, Sun L, Niu L, Fu W, Liu F, Shen Z, Jin C and Liu Z 2015 Nano Lett. 15 6400 [31] Almeida G, Dogan S, Bertoni G, Giannini C, Gaspari R, Perissinotto S, Krahne R, Ghosh S and Manna L 2017 J. Am. Chem. Soc. 139 3005 [32] Xue F, Zhang J, Hu W, Hsu W T, Han A, Leung S F, Huang J K, Wan Y, Liu S, Zhang J, He J H, Chang W H, Wang Z L, Zhang X and Li L J 2018 ACS Nano 12 4976 [33] Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X and Li L J 2018 Nano Lett. 18 1253 [34] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z and Zhu W 2017 Nat. Commun. 8 14956 [35] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601 [36] Liu G, Zhang Z, Wang H, Li G, Wang J and Gao Z 2021 J. Appl. Phys. 130 105106 [37] Fu C F, Sun J, Luo Q, Li X, Hu W and Yang J 2018 Nano Lett. 18 6312 [38] Zhao P, Ma Y, Lv X, Li M, Huang B and Dai Y 2018 Nano Energy 51 533 [39] Xie Z, Yang F, Xu X, Lin R and Chen L 2018 Front. Chem. 6 430 [40] Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore II R L and Yu B 2014 ACS Nano 8 514 [41] Xiao J, Zhao M, Wang Y and Zhang X 2017 Nanophotonics 6 1309 [42] Mueller T and Malic E 2018 npj 2D Materilas and Applications 2 29 [43] Regan E C, Wang D, Paik E Y, Zeng Y, Zhang L, Zhu J, MacDonald A H, Deng H and Wang F 2022 Nature Reviews Materials 7 778 [44] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, et al. 2009 J. Phys.: Condens. Matter 21 395502 [45] Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, et al. 2017 J. Phys.: Condens. Matter 29 465901 [46] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [47] Sohier T, Calandra M and Mauri F 2017 Phys. Rev. B 96 075448 [48] Hamann D R 2013 Phys. Rev. B 88 85117 [49] van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese G M 2018 Comput. Phys. Commun. 226 39 [50] Godby R W and Needs R J 1989 Phys. Rev. Lett. 62 1169 [51] Bruneval F and Gonze X 2008 Phys. Rev. B 78 085125 [52] Albrecht S, Reining L, Del Sole R and Onida G 1998 Phys. Rev. Lett. 80 4510 [53] Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927 [54] Marini A, Hogan C, Grüning M and Varsano D 2009 Comput. Phys. Commun. 180 1392 [55] Sangalli D, Ferretti A, Miranda H, Attaccalite C, Marri I, Cannuccia E, Melo P, Marsili M, Paleari F, Marrazzo A, et al. 2019 J. Phys.: Condens. Matter 31 325902 [56] Palummo M, Bernardi M and Grossman J C 2015 Nano Lett. 15 2794 [57] Chen H Y, Jhalani V A, Palummo M and Bernardi M 2019 Phys. Rev. B 100 075135 [58] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744 [59] Xia C, Xiong W, Du J, Wang T, Peng Y and Li J 2018 Phys. Rev. B 98 165424 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|