Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107504    DOI: 10.1088/1674-1056/ad5d64
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Skyrmion motion induced by spin-waves on magnetic nanotubes

Tijjani Abdulrazak1,2,‡, Xuejuan Liu(刘雪娟)1,3, Zhenyu Wang(王振宇)1, Yunshan Cao(曹云姗)1, and Peng Yan(严鹏)1,†
1 School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Department of Physics, Bayero University, Kano-700006, Nigeria;
3 School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
Abstract  We investigate the skyrmion motion driven by spin waves on magnetic nanotubes through micromagnetic simulations. Our key results include demonstrating the stability and enhanced mobility of skyrmions on the edgeless nanotube geometry, which prevents destruction at boundaries—a common issue in planar geometries. We explore the influence of the damping coefficient, amplitude, and frequency of microwaves on skyrmion dynamics, revealing a non-uniform velocity profile characterized by acceleration and deceleration phases. Our results show that the skyrmion Hall effect is significantly modulated on nanotubes compared to planar models, with specific dependencies on the spin-wave parameters. These findings provide insights into skyrmion manipulation for spintronic applications, highlighting the potential for high-speed and efficient information transport in magnonic devices.
Keywords:  ferromagnetic      magnetic nanotube      Mumax3 software      skyrmion      spin-wave  
Received:  17 December 2023      Revised:  22 June 2024      Accepted manuscript online:  01 July 2024
PACS:  75.50.Gg (Ferrimagnetics)  
  71.35.Ji (Excitons in magnetic fields; magnetoexcitons)  
  12.39.Dc (Skyrmions)  
  75.30.Ds (Spin waves)  
Fund: This project was supported by the National Key R&D Program of China (Grant No. 2022YFA1402802) and the National Natural Science Foundation of China (Grant Nos. 12434003, 12374103, and 12074057).
Corresponding Authors:  Peng Yan, Tijjani Abdulrazak     E-mail:  yan@uestc.edu.cn;atijjani.phy@buk.edu.ng

Cite this article: 

Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhenyu Wang(王振宇), Yunshan Cao(曹云姗), and Peng Yan(严鹏) Skyrmion motion induced by spin-waves on magnetic nanotubes 2024 Chin. Phys. B 33 107504

[1] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915
[2] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[3] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blugel S 2010 Nature 7 713
[4] Nagaosa N and Tokura Y 2010 Nat. Nanotechnol. 8 899
[5] Zhang X C, Zhou Y, Song K M, Park T E, Xia J, Ezawa M, Liu X X, Zhao W S, Zhao G P and Woo S 2020 J. Phys.: Condens. Matter 32 143001
[6] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[7] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[8] Iwassaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463
[9] Mochizuki M 2012 Phys. Rev. Lett. 108 017601
[10] Onose Y, Okamura Y, Seki S, Ishiwata S and Tokura Y 2012 Phys. Rev. Lett. 109 037603
[11] Lin S Z, Batista C D and Saxena A 2012 Phys. Rev. B 89 024415
[12] Zhang X, Zhao G P, Fangohr H, Liu J P, Xia J and Morvan F J 2015 Sci. Rep. 5 7643
[13] Yoo M W, Cros V and Von Kim J 2017 Phys. Rev. B 95 184423
[14] Zhang X, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293
[15] Upadhyaya P, Yu G, Amiri P K and Wang K L 2015 Phys. Rev. B 92 134411
[16] Fook H, Gan W, Purnama I and Lew W 2015 IEEE Trans. 51 1500204
[17] Purnama I, Gan W, Wong D and Lew W 2015 Sci. Rep. 5 10620
[18] Lai P, Zhao G, Tang H, Ran N, Wu S, Xia J, Zhang X and Zhou Y 2017 Sci. Rep. 7 45330
[19] Mulkers J, Van Waeyenberge B and Milosevic M V 2017 Phys. Rev. B 95 144401
[20] Zhang Y, Luo S, Yan B, Ou-Yang J, Yang X, Chen S, Zhu B and You L 2017 Nanoscale 9 10212
[21] Xing X, Akerman J and Zhou Y 2020 Phys. Rev. B 101 214432
[22] Zhang X, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293
[23] Barker J and Tretiakov O A 2016 Phys. Rev. Lett. 116 147203
[24] Zhang X, Zhou Y and Ezawa M 2016 Sci. Rep. 116 24795
[25] Zhang X C, Xia J, Zhou Y, Wang D W, Liu X X, Zhao W S and Ezawa M 2016 Phys. Rev. B 94 094420
[26] Zazvorka J, Jakobs F, Heinze D, Keil N, Kromin S, Jaiswal S, Litzius K, Jakob G, Virnau P, Pinna D, Eversechor-Sitte K, Rozsa L, Donges A, Nowak U and Klaui M 2019 Nat. Nanotechnol. 14 658
[27] Tan A, Ho P, Pin L, James H, Lisen T, Khume R, Cynthia R, Charles S and Anjan S 2021 Nat. Commun. 12 4252
[28] Kolesnikov A G, Stebliy M E, Samardak A S and Ognev A V 2018 Sci. Rep. 8 16966
[29] Wang X F, Wang X S, Wang C, Yang H H, Cao Y S and Yan P 2019 J. Phys. D: Appl. Phys. 52 225001
[30] Xin M and Liu Y 2021 J. Magn. Magn. Mater. 536 168142
[31] Lin S, Charles R B, Cristian D and Saxena A 2013 Phys. Rev. Lett. 110 207202
[32] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Waeyenberge F B V 2014 AIP Adv. 4 107133
[33] Wang W, Albert M, Beg M, Bisotti M A, Chernyshenko D, Cortés-Ortuño D, Hawke I and Fangohr H 2015 Phys. Rev. Lett. 114 087203
[34] Venkat G, Fangohr H and Prabhakar A 2018 J. Magn. Magn. Mater. 450 34
[35] Papanicolaou N and Tomaras T N 1991 Nucl. Phys. 360 425
[36] Ishida Y and Kondo K 2020 J. Magn. Magn. Mater. 493 165687
[37] Kong L and Zang J 2013 Phys. Rev. Lett. 111 067203
[38] Qiu L, Xia J, Feng Y, Shen L, Morvan F J, Zhang X, Liu X, Xie L, Zhou Y and Zhao G 2020 J. Magn. Magn. Mater. 496 165922
[1] In-phase and out-of-phase spin pumping effects in Py/Ru/Py synthetic antiferromagnetic structures
Zhaocong Huang(黄兆聪), Xuejian Tang(唐学健), Qian Chen(陈倩), Wei Jiang(蒋伟), Qingjie Guo(郭庆杰), Milad Jalali, Jun Du(杜军), and Ya Zhai(翟亚). Chin. Phys. B, 2024, 33(9): 097202.
[2] Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhejunyu Jin(金哲珺雨), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2024, 33(8): 087503.
[3] Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure
Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(7): 077303.
[4] Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel
Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵). Chin. Phys. B, 2024, 33(7): 077505.
[5] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[6] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[7] Interfacial DMI in Fe/Pt thin films grown on different buffer layers
Wen-Jun Zhang(张文君), Fei Wei(魏菲), Bing Liu(刘冰), Yang Zhou(周阳), Shi-Shou Kang(康仕寿), and Bing Sun(孙兵). Chin. Phys. B, 2024, 33(4): 048501.
[8] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[9] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[10] Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers
Huiping Li(李慧平), Shuaiwei Pan(潘帅唯), Zhe Wang(王喆), Bin Xiang(向斌), and Wenguang Zhu(朱文光). Chin. Phys. B, 2024, 33(1): 017504.
[11] Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾). Chin. Phys. B, 2024, 33(1): 016301.
[12] Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals
Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超), Henan Fang(方贺男), Lin Chen(陈琳), and Zhi-Kuo Tao(陶志阔). Chin. Phys. B, 2024, 33(1): 017501.
[13] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[14] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[15] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
No Suggested Reading articles found!