Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107102    DOI: 10.1088/1674-1056/ad6a0a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The de Haas-van Alphen quantum oscillations in the kagome metal RbTi3Bi5

Zixian Dong(董自仙), Lei Shi(石磊), Bin Wang(王彬), Mengwu Huo(霍梦五), Xing Huang(黄星), Chaoxin Huang(黄潮欣), Peiyue Ma(马培跃), Yunwei Zhang(张云蔚)†, Bing Shen(沈冰)‡, and Meng Wang(王猛)§
Center for Neutron Science and Technology, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  The kagome system has attracted great interest in condensed matter physics due to its unique structure that can host various exotic states such as superconductivity (SC), charge density waves (CDWs) and nontrivial topological states. The topological semimetal RbTi$_{3}$Bi$_{5}$ consisting of a Ti kagome layer shares a similar crystal structure to the topological correlated materials $A$V$_{3}$Sb$_{5}$ ($A = {\rm K}$, Rb, Cs) but without the absence of CDW and SC. Systematic de Haas-van Alphen oscillation measurements are performed on single crystals of RbTi$_{3}$Bi$_{5}$ to pursue nontrivial topological physics and exotic states. Combining this with theoretical calculations, the detailed Fermi surface topology and band structure are investigated. A two-dimensional Fermi pocket $\beta $ is revealed with a light effective mass, consistent with the semimetal predictions. The Landau fan diagram of RbTi$_{3}$Bi$_{5}$ reveals a zero Berry phase for the $\beta $ oscillation in contrast to that of CsTi$_{3}$Bi$_{5}$. These results suggest that kagome RbTi$_{3}$Bi$_{5 }$ is a good candidate for exploring nontrivial topological exotic states and topological correlated physics.
Keywords:  oscillation      Fermi surface      band structure  
Received:  21 May 2024      Revised:  18 July 2024      Accepted manuscript online:  01 August 2024
PACS:  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  52.70.Ds (Electric and magnetic measurements)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 12174454, U2130101, and 92165204), the Guangdong Basic and Applied Basic Research Funds (Grant Nos. 2024B1515020040 and 2022A1515010035), Guangzhou Basic and Applied Basic Research Funds (Grant No. 2024A04J6417), and Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008).
Corresponding Authors:  Yunwei Zhang, Bing Shen, Meng Wang     E-mail:  zhangyunw@mail.sysu.edu.cn;shenbing@mail.sysu.edu.cn;wangmeng5@mail.sysu.ed.cn

Cite this article: 

Zixian Dong(董自仙), Lei Shi(石磊), Bin Wang(王彬), Mengwu Huo(霍梦五), Xing Huang(黄星), Chaoxin Huang(黄潮欣), Peiyue Ma(马培跃), Yunwei Zhang(张云蔚), Bing Shen(沈冰), and Meng Wang(王猛) The de Haas-van Alphen quantum oscillations in the kagome metal RbTi3Bi5 2024 Chin. Phys. B 33 107102

[1] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[2] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[3] Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[4] Kong X M, Tao Z C, Zhang R, Xia W, Chen X, Pei C Y, Ying T P, Qi Y P, Guo Y F, Yang X F and Li S Y 2024 Chin. Phys. Lett. 41 047503
[5] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[6] Wu X, Schwemmer T, Müller T, Consiglio A, Sangiovanni G, Di Sante D, Iqbal Y, Hanke W, Schnyder A P, Denner M M, Fischer M H, Neupert T and Thomale R 2021 Phys. Rev. Lett. 127 177001
[7] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[8] Hao Z Y, Cai Y Q, Liu Y X, et al. 2022 Phys. Rev. B 106 L081101
[9] Shrestha K, Chapai R, Pokharel B K, Miertschin D, Nguyen T, Zhou X, Chung D Y, Kanatzidis M G, Mitchell 2022 Phys. Rev. B 105 024508
[10] Li H, Zhao H, Ortiz B R, Park T, Ye M X, Balents L, Wang Z Q, Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265
[11] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403
[12] Zhu H G, Li T R, Yu F H, Li Y L, Wang S, Wu Y B, Liu Z F, Shang Z M, Cui S T, Liu Y, Zhang G B, Zhang L D, Wang Z Y, Wu T, Ying J Y, Chen X H and Sun Z 2023 Chin. Phys. Lett. 40 047301
[13] Li L Y, Yi E K, Wang B, Yu G Q, Shen B, Yan Z B and Wang M 2023 npj Quantum Mater. 8 2
[14] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[15] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103
[16] Song D W, Zheng L X, Yu F H, Li J, Nie L P, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Sun K L, Liu K, Luo X G, Wang Z Y, Ying J J, Wan X G, Wu T and Chen X H 2022 Sci. China Phys. Mech. 65 247462
[17] Wang Y X, Wu T, Li Z, Jiang K and Hu J P 2023 Phys. Rev. B 107 184106
[18] Mu C, Yin Q W, Tu Z J, Gong C S, Lei H C, Li Z and Luo J L 2021 Chin. Phys. Lett. 38 077402
[19] Mielke C, Das D, Yin J X, et al. 2022 Nature 602 245
[20] Luo H L, Gao Q, Liu H X, et al. 2022 Nat. Commun. 13 273
[21] Im J H and Kang C J 2023 Curr. Appl. Phys. 54 26
[22] Luo Y, Han Y L, Liu J J, et al. 2023 Nat. Commun. 14 3819
[23] Ding G F, Wo H L, Gu Y Q, Gu Y M and Zhao J 2022 Phys. Rev. B 106 235151
[24] Oey Y M, Ortiz B R, Kaboudvand F, Frassineti J, Garcia E, Cong R, Sanna S, Mitrović V F, Seshadri R and Wilson S D 2022 Phys. Rev. Mater. 6 L041801
[25] Kato T, Li Y K, Nakayama K, Wang Z W, Souma S, Matsui F, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Yao Y G and Sato T 2022 Phys. Rev. Lett. 129 206402
[26] Zhu C C, Yang X F, Xia W, Yin Q W, Wang L S, Zhao C C, Dai D Z, Tu C P, Song B Q, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F and Li S Y 2022 Phys. Rev. B 105 094507
[27] Zheng L X, Wu Z M, Yang Y, Nie L P, Shan M, Sun K L, Song D W, Yu F H, Li J, Zhao D, Li S J, Kang B L, Zhou Y B, Liu K, Xiang Z J, Ying J N, Wang Z Y, Wu T and Chen X H 2022 Nature 611 682
[28] Du F, Luo S S, Ortiz B R, Chen Y, Duan W Y, Zhang D T, Lu X, Wilson S D, Song Y and Yuan H Q 2021 Phys. Rev. B 103 L220504
[29] Yang H T, Ye Y H, Zhao Z, et al. 2022 arXiv:2211.12264 [condmat.supr-con]
[30] Werhahn D, Ortiz B R, Hay A K, Wilson S D, Seshadri R and Johrendt D 2022 De Gruyter. 77 757
[31] Jiang Z C, Liu Z T, Ma H Y, Xia W, Liu Z H, Liu J S, Cho S H Y, Yang Y C, Ding J Y, Liu J Y, Huang Z, Qiao Y X, Shen J J, Jing W C, Liu X Q, Liu J P, Guo Y F and Shen D W 2023 Nat. Commun. 14 4892
[32] Li H, Cheng S Y, Ortiz B R, Tan H X, Werhahn D, Zeng K Y, Johrendt D, Yan B H, Wang Z Q, Wilson S D and Zeljkovic I 2023 Nat. Phys. 19 1591
[33] Yang J A, Yi X W, Zhao Z, et al. 2023 Nat. Commun. 14 4089
[34] Yi X W, Liao Z W, You J Y, Gu B and Su G 2023 Research 6 0238
[35] Chen X T, Liu X Q, Xia W, Mi X R, Zhong L Y, Yang K Y, Zhang L, Gan Y H, Liu Y, Wang G W, Wang A F, Chai Y S, Shen J Y, Yang X L, Guo Y F and He M Q 2023 Phys. Rev. B 107 174510
[36] Huang J X, Yamakawa Y, Tazai R, Morimoto T and Kontani H 2023 arXiv: 2305.18093 [cond-mat.str-el]
[37] Rehfuss Z, Broyles C, Graf D, Li Y K, Tan H X, Zhao Z, Liu J L, Zhang Y H, Dong X L, Yang H, Gao H J, Yan B H and Ran S 2024 Phys. Rev. Mater. 8 024003
[38] Zhou Y, Chen L, Ji X C, Liu C, Liao K, Guo Z N, Wang J O, Weng H M and Wang G 2023 arXiv: 2301.01633 [cond-mat.supr-con]
[39] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[40] Blöchl P E 1994 Phys. Rev. B 50 17953
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Kokalj A 1999 J. Mol. Graphics Mod. 17 176
[43] Rourke P M C and Julian S R 2012 Comput. Phys. Commun. 183 324
[44] Wang Y, Liu Y X, Hao Z Y, et al. 2023 Chin. Phys. Lett. 40 037102
[45] Shoenberg D 1984 Magnetic oscillations in metals (New York: Cambridge University press) pp. 290-312
[46] Xia W, Shi X, Wang Y, Ge W, Su H, Wang Q, Wang X, Yu N, Zou Z, Hao Y, Zhao W and Guo Y 2020 Appl. Phys. Lett. 116 142103
[47] Yi X W, Liao Z W, You J Y and Su G 2023 Research 6 0238
[48] Liu B, Kuang M Q, Luo Y, et al. 2023 Phys. Rev. Lett. 131 026701
[1] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[2] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[3] Reanalysis of energy band structure in the type-II quantum wells
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(6): 067302.
[4] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[5] Coexisting fast-slow dendritic traveling waves in a 3D-array electric field coupled neuronal network
Xile Wei(魏熙乐), Zeyu Ren(任泽宇), Meili Lu(卢梅丽), Yaqin Fan(樊亚琴), and Siyuan Chang(常思远). Chin. Phys. B, 2024, 33(6): 068702.
[6] Coherence of nonlinear Bloch dynamics of Bose—Einstein condensates in deep optical lattices
Ai-Xia Zhang(张爱霞), Wei Zhang(张薇), Jie Wang(王杰), Xiao-Wen Hu(胡潇文), Lai-Lai Mi(米来来), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2024, 33(4): 040305.
[7] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[8] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
[9] Effects of carrier density and interactions on pairing symmetry in a t2g model
Yun-Xiao Li(李云霄), Wen-Han Xi(西文翰), Zhao-Yang Dong(董召阳), Zi-Jian Yao(姚子健), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新). Chin. Phys. B, 2024, 33(1): 017404.
[10] Calibration and cancellation of microwave crosstalk in superconducting circuits
Haisheng Yan(严海生), Shoukuan Zhao(赵寿宽), Zhongcheng Xiang(相忠诚), Ziting Wang(王子婷), Zhaohua Yang(杨钊华), Kai Xu(许凯), Ye Tian(田野), Haifeng Yu(于海峰), Dongning Zheng(郑东宁), Heng Fan(范桁), and Shiping Zhao(赵士平). Chin. Phys. B, 2023, 32(9): 094203.
[11] Nonlinear current response and electric quantum oscillations in the Dirac semimetal Cd3As2
Hao-Nan Cui(崔浩楠), Ze-Nan Wu(吴泽南), Jian-Kun Wang(王建坤), Guang-Yu Zhu(祝光宇), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), Ben-Chuan Lin(林本川), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2023, 32(8): 087306.
[12] Periodic electron oscillation in coupled two-dimensional lattices
Yan-Yan Lu(陆艳艳), Chao Wang(王超), Jin-Yi Jiang(将金益), Jie Liu(刘洁), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2023, 32(7): 070306.
[13] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[14] Transient study of droplet oscillation characteristics driven by an electric field
Yan-Fei Gao(高燕飞), Wei-Feng He(何纬峰), Adam Abdalazeem, Qi-Le Shi(施其乐), Ji-Rong Zhang(张继荣),Peng-Fei Su(苏鹏飞), Si-Yong Yu(俞思涌), Zhao-Hui Yao(姚照辉), and Dong Han(韩东). Chin. Phys. B, 2023, 32(12): 128201.
[15] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
No Suggested Reading articles found!