Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 100502    DOI: 10.1088/1674-1056/ad6b87
GENERAL Prev   Next  

Effective regulation of the interaction process among three optical solitons

Houhui Yi(伊厚会)1, Xiaofeng Li(李晓凤)1, Junling Zhang(张俊玲)1, Xin Zhang(张鑫)1,†, and Guoli Ma(马国利)2,‡
1 School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China;
2 School of Aviation and Aerospace, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
Abstract  The interaction between three optical solitons is a complex and valuable research direction, which is of practical application for promoting the development of optical communication and all-optical information processing technology. In this paper, we start from the study of the variable-coefficient coupled higher-order nonlinear Schrödinger equation (VCHNLSE), and obtain an analytical three-soliton solution of this equation. Based on the obtained solution, the interaction of the three optical solitons is explored when they are incident from different initial velocities and phases. When the higher-order dispersion and nonlinear functions are sinusoidal, hyperbolic secant, and hyperbolic tangent functions, the transmission properties of three optical solitons before and after interactions are discussed. Besides, this paper achieves effective regulation of amplitude and velocity of optical solitons as well as of the local state of interaction process, and interaction-free transmission of the three optical solitons is obtained with a small spacing. The relevant conclusions of the paper are of great significance in promoting the development of high-speed and large-capacity optical communication, optical signal processing, and optical computing.
Keywords:  optical solitons      solitons interactions      nonlinear Schrödinger equation      higher-order dispersion and nonlinear effects  
Received:  18 July 2024      Revised:  30 July 2024      Accepted manuscript online:  06 August 2024
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the Scientific Research Foundation of Weifang University of Science and Technology (Grant Nos. KJRC2022002 and KJRC2023035).
Corresponding Authors:  Xin Zhang, Guoli Ma     E-mail:  phyxin@163.com;bz_mgl$@$163.com

Cite this article: 

Houhui Yi(伊厚会), Xiaofeng Li(李晓凤), Junling Zhang(张俊玲), Xin Zhang(张鑫), and Guoli Ma(马国利) Effective regulation of the interaction process among three optical solitons 2024 Chin. Phys. B 33 100502

[1] Song Y J, Zou D F, Gat O, Hu M L and Grelu P 2023 Laser Photon. Rev. 17 2300066
[2] Sun Y, Wu J Y, Tan M X, Xu X Y, Li Y, Morandotti R, Mitchell A and MOss D J 2023 Adv. Opt. Photon. 15 86
[3] Drake T E, Stone J R, Briles T C and Papp S B 2020 Nat. Photon. 14 480
[4] Yang Q F, Shen B Q, Wang H M, Tran M, Zhang Z W, Yang K Y, Wu L, Bao C Y, Bowers J, Yariv A and Vahala K 2019 Science 363 965
[5] Song X H, Yang C Y, Yu W T, Zhang Y J, Liu M L, Lei M and Liu W J 2017 J. Electromagnet. Wave 31 762
[6] Yi H H, Zhang X, Shi L X, Yao Y L, Wang S B and Ma G L 2024 Chin. Phys. Lett. 41 044204
[7] Si Z Z, Dai C Q and Liu W 2024 Chin. Phys. Lett. 41 020502
[8] Yang W, Cheng X P, Jin G M and Wang J A 2023 Chin. Phys. B 32 120202
[9] Yi H H, Yao Y L, Zhang X and Ma G L 2023 Chin. Phys. B 32 100509
[10] Yao Y L, Yi H H, Zhang X and Ma G L 2023 Chin. Phys. Lett. 40 100503
[11] Yan Z W, Yan Y Y, Liu M W and Liu W J 2024 Appl. Math. Lett. 157 109164
[12] Wang S B, Ma G L, Zhang X and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[13] Wang S B, Zhang X, Ma G L and Zhu D Y 2023 Chin. Phys. B 32 030506
[14] Wang T Y, Zhou Q and Liu W J 2022 Chin. Phys. B 31 020501
[15] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J and Biswas A 2022 Chin. Phys. Lett. 39 044202
[16] Wang S B, Ma G L, Zhang X and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[17] Yuan C L, Liu W J, Yang H J and Tian Y 2024 Chaos Soliton. Fract. 185 115061
[18] Wang H T, Yang H J, Tian Y and Liu W J 2024 Chaos 34 053125
[19] Li Z, Liu M W, Jiang Y and Liu W J 2024 Nonlinear Dynam. 112 8495
[20] Liu M W, Wang H T, Yang H J and Liu W J 2023 Nonlinear Dynam. 112 1327
[21] Wang H T, Zhou Q, Yang H J, Meng X K, Tian Y and Liu W J 2023 P. Roy. Soc. A-Math. Phy. 479 20230601
[22] Sun Y Z, Hu Z H, Triki H, Mirzazadeh M, Liu W J, Biswas A and Zhou Q 2023 Nonlinear Dynam. 111 18391
[23] Guan X, Wang H T, Liu W J and Liu X Y 2023 Nonlinear Dynam. 111 7619
[24] Zhou Q, Huang Z H, Sun Y Z, Triki H, Liu W J and Biswas A 2023 Nonlinear Dynam. 111 5757
[25] Liu X Y, Zhang H X, Yan Y Y and Liu W J 2023 Phys. Lett. A 457 128568
[26] Wang T Y, Zhou Q and Liu W J 2022 Chin. Phys. B 31 020501
[27] Zhou Q, Wang T Y, Biswas A and Liu W J 2021 Nonlinear Dynam. 107 1215
[28] Liu X Y, Zhang H X and Liu W J 2022 Appl. Math. Model. 102 305
[29] Ma G L, Zhao J B, Zhou Q, Biswas A and Liu W J 2021 Nonlinear Dynam. 106 2479
[30] Yi H H, Li X F, Zhang J L, Zhang X and Ma G L 2024 Chin. Phys. Lett. 41 074204
[1] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[2] Influence of the initial parameters on soliton interaction in nonlinear optical systems
Xinyi Zhang(张昕仪) and Ye Wu(吴晔). Chin. Phys. B, 2023, 32(7): 070505.
[3] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[4] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
[5] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[6] Nondegenerate solitons of the (2+1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in nonlinear optical fibers
Wei Yang(杨薇), Xueping Cheng(程雪苹), Guiming Jin(金桂鸣), and Jianan Wang(王佳楠). Chin. Phys. B, 2023, 32(12): 120202.
[7] High-order effect on the transmission of two optical solitons
Houhui Yi(伊厚会), Yanli Yao(姚延立), Xin Zhang(张鑫), and Guoli Ma(马国利). Chin. Phys. B, 2023, 32(10): 100509.
[8] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[9] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[10] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[11] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[12] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[13] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[14] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[15] Generation of single and multiple dissipative soliton in an erbium-doped fiber laser
Li-Na Duan(段利娜), Jin Wen(文进), Wei Fan(樊伟), Wei Wang(王炜). Chin. Phys. B, 2017, 26(10): 104205.
No Suggested Reading articles found!