Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 108103    DOI: 10.1088/1674-1056/ad6a06
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments

Ruike Zhang(张瑞柯)1, Ruiang Guo(郭睿昂)1, Qian Li(李倩)1, Shuaiqi Li(李帅琦)2, Haidong Long(龙海东)1, and Duanwei He(贺端威)1,3,†
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China;
3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride. They can interconvert under varying pressure and temperature conditions. However, this transformation requires overcoming significant potential barriers in dynamics, which poses great difficulty in determining the c-BN/h-BN phase boundary. This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range (3-6 GPa) for the industrial synthesis of c-BN to constrain the $P$-$T$ phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible. Based on the analysis of the experimental data, it is determined that the relationship between pressure and temperature conforms to the following equation: $P = a + \frac{1}{b}T$. Here, $P$ denotes the pressure (GPa) and $T$ is the temperature (K). The coefficients are $a = -3.8\pm0.8$ GPa and $b = 229.8\pm17.1$ GPa/K. These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride, which seem to overstate the phase boundary temperature between c-BN and h-BN. The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN, thus optimizing synthesis efficiency and product performance.
Keywords:  hexagonal boron nitride      phase diagram      high temperature and high pressure      cubic boron nitride      phase transition      differential thermal analysis  
Received:  14 February 2024      Revised:  16 July 2024      Accepted manuscript online:  01 August 2024
PACS:  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
  81.30.Dz (Phase diagrams of other materials)  
  81.30.Hd (Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder)  
  64.70.-p (Specific phase transitions)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFA1406200).
Corresponding Authors:  Duanwei He     E-mail:  duanweihe@scu.edu.cn

Cite this article: 

Ruike Zhang(张瑞柯), Ruiang Guo(郭睿昂), Qian Li(李倩), Shuaiqi Li(李帅琦), Haidong Long(龙海东), and Duanwei He(贺端威) Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments 2024 Chin. Phys. B 33 108103

[1] Song Z, Wang W, Cai G and Liu Q H 2018 Plasmonics 13 563
[2] Zhou W, Zuo J, Zhang X and Zhou A 2014 Journal of Composite Materials 48 2517
[3] Perevislov S N 2019 Refractories and Industrial Ceramics 60 291
[4] Kim T Y, Song E H, Kang B H, Kim S J, Lee, Y H and Ju B K 2017 Nanotechnology 28 125207
[5] Turkoglu M, Sahin I and San T 2005 Pharmaceutical Development and Technology 10 381
[6] Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A and Crommie M F 2011 Nano Lett. 11 2291
[7] Revabhai P M, Singhal R K, Basu H and Kailasa S K 2023 Journal of Nanostructure in Chemistry 13 1
[8] Shtansky D V, Firestein K L and Golberg D V 2018 Nanoscale 10 17477
[9] Naftaly M, Leist J and Fletcher J R 2013 Optical Materials Express 3 260
[10] Liu T, Kou Z, Lu J, Yan X, Liu F, Li X, Ding W, Liu J, Zhang Q, Wang Q, Ma D, Lei L and He D 2017 J. Appl. Phys. 121 125902
[11] Liu G, Kou Z, Yan X, Lei L, Peng F, Wang Q, Wang K, Wang P, Li L, Li Y, Li W, Wang Y, Bi Y, Leng Y and He D 2015 Appl. Phys. Lett. 106 121901
[12] Yang M, Kou Z L, Liu T, Lu J R, Liu F M, Liu Y J, Qi L, Ding W, Gong H X, Ni X L and He D W 2018 Chin. Phys. B 27 056105
[13] Zhao M, Kou Z, Zhang Y, Peng B, Wang Y, Wang Z, Yin X, Jiang M, Guan S, Zhang J and He D 2021 Appl. Phys. Lett. 118 151901
[14] Mosuang T E and Lowther J E 2002 Journal of Physics and Chemistry of Solids 63 363
[15] Wentorf R H 1957 The Journal of Chemical Physics 26 956
[16] Bundy F P and Wentorf R H 1963 The Journal of Chemical Physics 38 1144
[17] Corrigan F R and Bundy F P 1975 The Journal of Chemical Physics 63 3812
[18] Solozhenko V L 1995 High Pressure Research 13 199
[19] Albe K, Müller W and Heinig K H 1997 Radiation Effects and Defects in Solids 141 85
[20] Solozhenko V L 1993 Thermochimica Acta 218 221
[21] Solozhenko V L 1994 Diamond and Related Materials 4 1
[22] Kern G, Kresse G and Hafner J 1999 Phys. Rev. B 59 8551
[23] Eremets M I, Takemura K, Yusa H, Golberg D, Bando Y, Blank V D, Sato Y and Watanabe K 1998 Phys. Rev. B 57 5655
[24] Will G, Nover G and Von Der Gönna J 2000 Journal of Solid State Chemistry 154 280
[25] Bundy F P and Kasper J S 1967 The Journal of Chemical Physics 46 3437
[26] Liang A, Liu Y, Shi L, Lei L, Zhang F, Hu Q and He D 2019 Phys. Rev. Res. 1 033090
[27] Zhang J, Liu F, Li S, Liang H, Guan S, Wang J, Tian Y, Zhao M and He D 2021 Journal of the European Ceramic Society 41 132
[28] McQueen H J 2004 Materials Science and Engineering: A 387-389 203
[29] De Koker N 2012 J. Phys.: Condens. Matter 24 055401
[30] Ankudinov V and Galenko P K 2022 Phil. Tran. Roy. Soc. A: Math. Phys. Eng. Sci. 380 20200318
[31] Merrill L 1977 Journal of Physical and Chemical Reference Data 6 1205
[32] Solozhenko V L, Turkevich V Z and Holzapfel W B 1999 The Journal of Physical Chemistry B 103 2903
[33] Hu S, Yang J, Liu W, Dong Y, Cao S and Liu J 2011 Journal of Solid State Chemistry 184 1598
[34] Wang J, Tian Y, Su Y, Xiang X, Zhou L, Huang M, Zhang L and He D 2023 CrystEngComm 25 1884
[35] He D W, Zhang F X, Zhang M, Liu R P, Qin Z C, Xu Y F and Wang W K 1997 Appl. Phys. Lett. 71 3811
[36] Liu Y, He D, Wang P, Yan X, Xu C, Liu F, Liu J and Hu Q 2016 International Journal of Refractory Metals and Hard Materials 61 1
[37] Liang A, Liu Y, Liang H, Liu F, Fan C, Zhang J, Wu J, Chen J and He D 2018 High Pressure Research 38 458
[38] Wang J, He D, Li X, Zhang J, Li Q, Wang Z, Su Y, Tian Y, Yang J and Peng B 2020 Solid State Commun. 307 113805
[39] Sachdev, H, Haubner, R, Nöth H and Lux B 1997 Diamond and Related Materials 6 286
[40] He D, He M, Kiminami C S, Zhang F X, Xu Y F, Wang W K and Kuo K H 2001 J. Mater. Res. 16 910
[41] Li Q, Zhang J, Liu J, Tian Y, Liang W, Zheng L, Zhou L and He D 2022 Diamond and Related Materials 128 109241
[42] Guan S, Peng F, Liang H, Fan C, Tan L, Wang Z, Zhang Y, Zhang J, Yu H and He D 2018 J. Appl. Phys. 124 215902
[43] Chen C, Huang R, Wang Z, Shibata N, Taniguchi T and Ikuhara Y 2013 Diamond and Related Materials 32 27
[44] Lei L, Zhang L, Gao S, Hu Q, Fang L, Chen X, Xia Y, Wang X, Ohfuji H, Kojima Y, Redfern S A T, Zeng Z, Chen B, He D and Irifune T 2018 J. Alloys Compd. 752 99
[45] Wang S, He D, Wang W and Lei L 2009 High Pressure Research 29 806
[46] Kennedy G 1971 Journal of Geophysical Research 76 4969
[47] Wang W H 2013 Progress in Physics 33 177
[1] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[2] Phase diagram and quench dynamics of a periodically driven Haldane model
Minxuan Ren(任民烜), Han Yang(杨焓), and Mingyuan Sun(孙明远). Chin. Phys. B, 2024, 33(9): 090309.
[3] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[4] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[5] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[6] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[7] Effect of distribution shape on the melting transition, local ordering, and dynamics in a model size-polydisperse two-dimensional fluid
Jackson Pame and Lenin S. Shagolsem. Chin. Phys. B, 2024, 33(7): 074702.
[8] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[9] Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields
Lvjin Wang(王侣锦), Cong Wang(王聪), Linwei Zhou(周霖蔚), Xieyu Zhou(周谐宇), Yuhao Pan(潘宇浩), Xing Wu(吴幸), and Wei Ji(季威). Chin. Phys. B, 2024, 33(7): 076803.
[10] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[11] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[12] Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity
Ping-Hui Mou(牟平辉), Qing-Quan Jiang(蒋青权), Ke-Jian He(何柯腱), and Guo-Ping Li(李国平). Chin. Phys. B, 2024, 33(6): 060401.
[13] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[14] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
[15] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
No Suggested Reading articles found!