Special Issue:
Featured Column — COMPUTATIONAL PROGRAMS FOR PHYSICS
|
COMPUTATIONAL PROGRAMS FOR PHYSICS |
Prev
Next
|
|
|
Charge self-consistent dynamical mean field theory calculations in combination with linear combination of numerical atomic orbitals framework based density functional theory |
Xin Qu(瞿鑫)1, Peng Xu(许鹏)2,†, Zhiyong Liu(刘志勇)3, Jintao Wang(王金涛)2, Fei Wang(王飞)2, Wei Huang(黄威)1, Zhongxin Li(李忠星)1, Weichang Xu(徐卫昌)1, and Xinguo Ren(任新国)4,‡ |
1 Qingzhou High Technology Institute, Weifang 262500, China; 2 Rocket Force University of Engineering, Xi'an 710025, China; 3 Beijing Research Institute of High Technology, Beijing 100077, China; 4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We present a formalism of charge self-consistent dynamical mean field theory (DMFT) in combination with density functional theory (DFT) within the linear combination of numerical atomic orbitals (LCNAO) framework. We implemented the charge self-consistent $\rm DFT+DMFT$ formalism by interfacing a full-potential all-electron DFT code with three hybridization expansion-based continuous-time quantum Monte Carlo impurity solvers. The benchmarks on several 3d, 4f and 5f strongly correlated electron systems validated our formalism and implementation. Furthermore, within the LCANO framework, our formalism is general and the code architecture is extensible, so it can work as a bridge merging different LCNAO DFT packages and impurity solvers to do charge self-consistent $\rm DFT+DMFT$ calculations.
|
Received: 29 May 2024
Revised: 10 July 2024
Accepted manuscript online: 19 July 2024
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
Corresponding Authors:
Peng Xu, Xinguo Ren
E-mail: xupeng76345@163.com;renxg@iphy.ac.cn
|
Cite this article:
Xin Qu(瞿鑫), Peng Xu(许鹏), Zhiyong Liu(刘志勇), Jintao Wang(王金涛), Fei Wang(王飞), Wei Huang(黄威), Zhongxin Li(李忠星), Weichang Xu(徐卫昌), and Xinguo Ren(任新国) Charge self-consistent dynamical mean field theory calculations in combination with linear combination of numerical atomic orbitals framework based density functional theory 2024 Chin. Phys. B 33 107106
|
[1] Anisimov V V, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943 [2] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13 [3] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865 [4] Held K 2007 Adv. Phys. 56 829 [5] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324 [6] Anisimov V I, Poteryaev A I, Korotin M A, Anokhin A O and Kotliar G 1997 J. Phys. Condens. Matter 9 7359 [7] Lichtenstein A I and Katsnelson M I 1998 Phys. Rev. B 57 6884 [8] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 [9] Becke A D 1993 J. Chem. Phys. 98 5648 [10] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [11] Li C, Zheng X, Su N Q and Yang W 2018 Natl. Sci. Rev. 5 203 [12] Su N Q, Mahler A and Yang W 2020 J. Phys. Chem. Lett. 11 1528 [13] Su N Q, Li C and Yang W 2018 Proc. Natl. Acad. Sci. USA 115 9678 [14] Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929 [15] Savrasov S Y, Kotliar G and Abrahams E 2001 Nature 410 793 [16] Dai X, Savrasov S Y, Kotliar G, Migliori A, Ledbetter H and Abrahams E 2003 Science 300 953 [17] Shim J H, Haule K and Kotliar G 2007 Nature 446 513 [18] Shim J H, Haule K and Kotliar G 2007 Science 318 1615 [19] Savrasov S Y and Kotliar G 2004 Phys. Rev. B 69 245101 [20] Hampel A, Beck S and Ederer C 2020 Phys. Rev. Res. 2 033088 [21] Beck S, Hampel A, Parcollet O, Ederer C and Georges A 2022 J. Phys. Condens. Matter 34 235601 [22] Plekhanov E, Hasnip P, Sacksteder V, Probert M, Clark S J, Refson K and Weber C 2018 Phys. Rev. B 98 075129 [23] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 [24] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [25] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [26] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309 [27] Schüler M, Peil O E, Kraberger G J, et al. 2018 J. Phys. Condens. Matter 30 475901 [28] Amadon B 2012 J. Phys. Condens. Matter 24 075604 [29] Gonze X, Jollet F, Abreu Araujo F, Adams D, et al. 2016 Comput. Phys. Commun. 205 106 [30] Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107 [31] Bhandary S, Assmann E, Aichhorn M and Held K 2016 Phys. Rev. B 94 155131 [32] Granäs O, Di Marco I, Thunström P, Nordström L, Eriksson O, Björkman T and Wills J 2012 Comput. Mater. Sci. 55 295 [33] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys. Condens. Matter 14 2745 [34] Delley B 2000 J. Chem. Phys. 113 7756 [35] Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K and Scheffler M 2009 Comput. Phys. Commun. 180 2175 [36] Li P, Liu X, Chen M, Lin P, Ren X, Lin L, Yang C and He L 2016 Comput. Mater. Sci. 112 503 [37] Sim J H and Han M J 2019 Phys. Rev. B 100 115151 [38] Qu X, Xu P, Li R, Li G, He L and Ren X 2022 J. Chem. Theory Comput. 18 5589 [39] Pulay P 1980 Chem. Phys. Lett. 73 393 [40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [42] Werner P, Comanac A, De’ Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405 [43] Li G 2015 Phys. Rev. B 91 165134 [44] Huang L, Wang Y, Meng Z Y, Du L, Werner P and Dai X 2015 Comput. Phys. Commun. 195 140 [45] Huang L 2017 Comput. Phys. Commun. 221 [46] iQIST [47] Haule K 2007 Phys. Rev. B 75 155113 [48] CTQMC impurity solver of eDMFT [49] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [50] Lechermann F, Georges A, Poteryaev A, Biermann S, Posternak M, Yamasaki A and Andersen O K 2006 Phys. Rev. B 74 125120 [51] Amadon B, Lechermann F, Georges A, Jollet F, Wehling T O and Lichtenstein A I 2008 Phys. Rev. B 77 205112 [52] Pavarini E, Biermann S, Poteryaev A, Lichtenstein A I, Georges A and Andersen O K 2004 Phys. Rev. Lett. 92 176403 [53] Anisimov V I and Lukoyanov A V 2014 Acta Crystallogr. Sect. C Struct. Chem. 70 137 [54] Anisimov V I, Kondakov D E, Kozhevnikov A V, et al. 2005 Phys. Rev. B 71 125119 [55] Nekrasov I A, Held K, Keller G, et al. 2006 Phys. Rev. B 73 155112 [56] Nekrasov I A, Keller G, Kondakov D E, Kozhevnikov A V, Pruschke T, Held K, Vollhardt D and Anisimov V I 2005 Phys. Rev. B 72 155106 [57] Sekiyama A, Fujiwara H, Imada S, et al. 2004 Phys. Rev. Lett. 93 156402 [58] Ren X, Leonov I, Keller G, Kollar M, Nekrasov I and Vollhardt D 2006 Phys. Rev. B 74 195114 [59] Kuneš J, Anisimov V I, Lukoyanov A V and Vollhardt D 2007 Phys. Rev. B 75 165115 [60] Sawatzky G A and Allen J W 1984 Phys. Rev. Lett. 53 2339 [61] Held K, McMahan A K and Scalettar R T 2001 Phys. Rev. Lett. 87 276404 [62] Bieder J and Amadon B 2014 Phys. Rev. B 89 195132 [63] Amadon B, Biermann S, Georges A and Aryasetiawan F 2006 Phys. Rev. Lett. 96 066402 [64] Grioni M, Weibel P, Malterre D, Baer Y and Duò L 1997 Phys. Rev. B 55 2056 [65] Weschke E, Laubschat C, Simmons T, Domke M, Strebel O and Kaindl G 1991 Phys. Rev. B 44 8304 [66] Wen X D, Martin R L, Henderson T M and Scuseria G E 2013 Chem. Rev. 113 1063 [67] Yin Q and Savrasov S Y 2008 Phys. Rev. Lett. 100 225504 [68] Yin Q, Kutepov A, Haule K, Kotliar G, Savrasov S Y and Pickett W E 2011 Phys. Rev. B 84 195111 [69] Huang L, Wang Y and Werner P 2017 Europhys. Lett. 119 57007 [70] Baer Y and Schoenes J 1980 Solid State Commun. 33 885 [71] Barrett S A, Jacobson A J, Tofield B C and Fender B E F 1982 Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 38 2775 [72] https://kaist-elst.github.io/DMFTpack/ |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|