Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107508    DOI: 10.1088/1674-1056/ad766f
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

MicroMagnetic.jl: A Julia package for micromagnetic and atomistic simulations with GPU support

Weiwei Wang(王伟伟)1,†, Boyao Lyu(吕伯尧)2,3, Lingyao Kong(孔令尧)4, Hans Fangohr5, and Haifeng Du(杜海峰)2,‡
1 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
3 University of Science and Technology of China, Hefei 230031, China;
4 School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China;
5 University of Southampton, Southampton SO17 1BJ, United Kingdom
Abstract  MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations. Using the features of the Julia programming language, MicroMagnetic.jl supports CPU and various GPU platforms, including NVIDIA, AMD, Intel, and Apple GPUs. Moreover, MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations. With built-in support for double and single precision modes and a design allowing easy extensibility to add new features, MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations.
Keywords:  micromagnetic simulations      atomistic simulations      graphics processing units  
Received:  23 June 2024      Revised:  31 August 2024      Accepted manuscript online:  03 September 2024
PACS:  75.78.Cd (Micromagnetic simulations ?)  
  75.40.Mg (Numerical simulation studies)  
  75.78.Fg (Dynamics of domain structures)  
  75.40.Gb (Dynamic properties?)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403603), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33030100), the National Natural Science Fund for Distinguished Young Scholar (Grant No. 52325105), the National Natural Science Foundation of China (Grant Nos. 12374098, 11974021, and 12241406), and the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-084).
Corresponding Authors:  Weiwei Wang, Haifeng Du     E-mail:  wangweiwei@ahu.edu.cn;duhf@hmfl.ac.cn

Cite this article: 

Weiwei Wang(王伟伟), Boyao Lyu(吕伯尧), Lingyao Kong(孔令尧), Hans Fangohr, and Haifeng Du(杜海峰) MicroMagnetic.jl: A Julia package for micromagnetic and atomistic simulations with GPU support 2024 Chin. Phys. B 33 107508

[1] Kronmüller H 2007 Handbook of Magnetism and Advanced Magnetic Materials (Kronmüller H and Parkin S, Ed.) (Chichester, UK: John Wiley & Sons, Ltd)
[2] Leliaert J and Mulkers J 2019 J. Appl. Phys. 125 180901
[3] Rezende S M 2020 Fundamentals of Magnonics (vol. 969) (Cham: Springer International Publishing)
[4] Flebus B, Grundler D, Rana B, Otani Y, Barsukov I, Barman A, Gubbiotti G, Landeros P, Akerman J, Ebels U S, Pirro P, Demidov V E, Schultheiss K, Csaba G, Wang Q, Nikonov D E, Ciubotaru F, Che P, Hertel R, Ono T, Afanasiev D, Mentink J H, Rasing T, Hillebrands B, Viola Kusminskiy S, Zhang W, Du C R, Finco A, Van Der Sar T, Luo Y K, Shiota Y, Sklenar J, Yu T and Rao J 2024 J. Phys.: Condens. Matter 36 363501
[5] Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S and Stiles M D 2020 Nat. Electron. 3 360
[6] Abert C 2019 Euro. Phys. J. B 92 120
[7] Barla P, Joshi V K and Bhat S 2021 Journal of Computational Electronics 20 805
[8] Miltat J E and Donahue M J 2007 Handbook of Magnetism and Advanced Magnetic Materials (Kronmüller H and Parkin S, Ed.) (Chichester, UK: John Wiley & Sons, Ltd)
[9] Schrefl T, Hrkac G and Bance S 2007 Handbook of Magnetism and Advanced Magnetic Materials Vol. 2
[10] Donahue M and Porter D 1999 OOMMF User’s Guide, Version 1.0
[11] Vansteenkiste A, Leliaert J, Dvornik M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Advances 4 107133
[12] Bisotti M A, Cortés-Ortuño D, Pepper R, Wang W, Beg M, Kluyver T and Fangohr H 2018 J. Open Res. Softw. 6 22
[13] Scholz W, Fidler J, Schrefl T, Suess D, Dittrich R, Forster H and Tsiantos V 2003 Computational Materials Science 28 366
[14] Fischbacher T, Franchin M, Bordignon G and Fangohr H 2007 IEEE Transactions on Magnetics 43 2896
[15] Pfeiler C M, Ruggeri M, Stiftner B, Exl L, Hochsteger M, Hrkac G, Schöberl J, Mauser N J and Praetorius D 2020 Computer Physics Communications 248 106965
[16] Bruckner F, Koraltan S, Abert C and Suess D 2023 Scientific Reports 13 12054
[17] Besard T, Churavy V, Edelman A and Sutter B D 2019 Advances in Engineering Software 132 29
[18] Churavy V, Aluthge D, Smirnov A, Schloss J, Samaroo J, Wilcox L C, Byrne S, Besard T, Ramadhan A, Waruszewski M, Schaub S D, Meredith, Moses W, Bolewski J, Constantinou N C, Ng M, Bauer C, Schanen M, johnbcoughlin, Shah V B, Dixit V K, Chor T, Holy T, Arakaki T, Yalburgi S, Liu R and Haraldsson P 2024 JuliaGPU/KernelAbstractions.jl: V0.9.18 [object Object]
[19] Bisotti M A, Beg M, Wang W, Albert M, Chernyshenko D, Cortés-Ortuño D, Pepper R A, Vousden M, Carey R, Fuchs H, Johansen A, Balaban G, Breth L, Kluyver T and Fangohr H 2018 FinMag: Finiteelement micromagnetic simulation tool Zenodo
[20] Newell A J, Williams W and Dunlop D J 1993 Journal of Geophysical Research 98 9551
[21] Abert C, Bruckner F, Vogler C, Windl R, Thanhoffer R and Suess D 2015 J. Magn. Magn. Mater. 387 13
[22] Wang W 2015 Computer Simulation Studies of Complex Magnetic Materials (Ph.D. thesis) (University of Southampton)
[23] Abert C, Selke G, Kruger B and Drews A 2012 IEEE Transactions on Magnetics 48 1105
[24] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[25] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201
[26] Cortés-Ortuño D, Beg M, Nehruji V, Breth L, Pepper R, Kluyver T, Downing G, Hesjedal T, Hatton P, Lancaster T, Hertel R, Hovorka O and Fangohr H 2018 New J. Phys. 20 113015
[27] Vedmedenko E Y, Riego P, Arregi J A and Berger A 2019 Phys. Rev. Lett. 122 257202
[28] Han D S, Lee K, Hanke J P, Mokrousov Y, Kim K W, Yoo W, Van Hees Y L W, Kim T W, Lavrijsen R, You C Y, Swagten H J M, Jung M H and Kläui M 2019 Nat. Mater. 18 703
[29] Tatara G, Kohno H and Shibata J 2008 Physics Reports 468 213
[30] Nowak U 2007 Handbook of Magnetism and Advanced Magnetic Materials 1st Edn. (Kronmüller H and Parkin S, Ed.) (Wiley)
[31] Skubic B, Hellsvik J, Nordström L and Eriksson O 2008 J. Phys.: Condens. Matter 20 315203
[32] Evans R F L, Fan W J, Chureemart P, Ostler T, Ellis M O and Chantrell R W 2014 J. Phys.: Condens. Matter 26 103202
[33] Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241
[34] Moriya T 1960 Phys. Rev. 120 91
[35] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422
[36] Gilbert T L 2004 IEEE Transactions on Magnetics 40 3443
[37] Press W H and Teukolsky S A 1992 Computers in Physics 6 188
[38] Slonczewski J 1996 J. Magn. Magn. Mater. 159 L1
[39] Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204
[40] Meo A, Cronshaw C E, Jenkins S, Lees A and Evans R F L 2023 J. Phys.: Condens. Matter 35 025801
[41] Krishnaprasad P S and Tan X 2001 Physica B 306 195
[42] Iserles A and Zanna A 2000 LMS Journal of Computation and Mathematics 3 44
[43] Diele F, Lopez L and Peluso R 1998 Advances in Computational Mathematics 8 317
[44] Abert C, Wautischer G, Bruckner F, Satz A and Suess D 2014 J. Appl. Phys. 116 123908
[45] Exl L, Bance S, Reichel F, Schrefl T, Peter Stimming H and Mauser N J 2014 J. Appl. Phys. 115 128
[46] Cortes D I 2017 Computational Simulations of Complex Chiral Magnetic Structures (Ph.D. thesis) (University of Southampton)
[47] Wang W, Zhang Z, APepper R, Mu C, Zhou Y and Fangohr H 2018 J. Phys.: Condens. Matter 30 015801
[48] Garanin D A 1996 Phys. Rev. B 53 11593
[1] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[2] Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏). Chin. Phys. B, 2024, 33(1): 016202.
[3] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[4] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
[5] Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞). Chin. Phys. B, 2017, 26(1): 017502.
[6] Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires
Hongxian Xie(谢红献), Tao Yu(于涛), Wei Fang(方伟), Fuxing Yin(殷福星), Dil Faraz Khan. Chin. Phys. B, 2016, 25(12): 126201.
[7] Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青). Chin. Phys. B, 2012, 21(9): 093104.
No Suggested Reading articles found!