INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
The B-site ordering in RFe0.5Cr0.5O3 ceramics and its effect on magnetic properties |
Li Hou(侯利)1,†, Lei Shi(石磊)2,‡, Liping Yang(杨利平)2, Yiqiang Liu(刘义强)1, Zhitao Li(李志涛)1, and Lanxiang Meng(孟蓝翔)1 |
1 School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, China; 2 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract To insight into the B-site ordering in $R$Fe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics, a series of $R$Fe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics ($R={\rm La}$, Y, Lu) were synthesized by the sol-gel method, and the structural and magnetic properties were systemically investigated. By using the Rietveld refinement of all samples, it is found that the structural distortion is increased as the $R$ ionic radius decreases, leading to the weakened interactions between Fe/Cr ions. Moreover, the Fe and Cr are arranged in disorder in LaFe$_{0.5}$Cr$_{0.5}$O$_{3}$, but partially ordered in YFe$_{0.5}$Cr$_{0.5}$O$_{3}$ and LuFe$_{0.5}$Cr$_{0.5}$O$_{3}$, showing an increasing trend of the proportion of ordered domains with the decrease of $R$ ionic radius. Through fitting the temperature-dependent magnetizations, it is identified that the magnetization reversal (MR) in disorder LaFe$_{0.5}$Cr$_{0.5}$O$_{3}$ is resulted from the competition between the moments of Cr and Fe sublattices. In the partially ordered YFe$_{0.5}$Cr$_{0.5}$O$_{3}$ and LuFe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics, because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains, the compensation temperature $T_{\rm comp}$ of MR is increased by nearly 50 K. These results suggest that the changing of $R$-site ions could be used very effectively to modify the Fe-O-Cr ordering, apart from the structural distortion, which has a direct effect on the magnetic exchange interactions in $R$Fe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics. Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion, one can expect a higher transition temperature $T_{\rm comp}$, providing a different view for adjustment of the magnetic properties of $R$Fe$_{0.5}$Cr$_{0.5}$O$_{3}$ ceramics for practical applications.
|
Received: 09 April 2024
Revised: 17 June 2024
Accepted manuscript online: 17 July 2024
|
PACS:
|
81.05.Je
|
(Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))
|
|
61.66.-f
|
(Structure of specific crystalline solids)
|
|
64.60.Cn
|
(Order-disorder transformations)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
Fund: This project was financially supported by the Natural Science Foundation of Henan Province, China (Grant Nos. 232300420353 and 232300420392), the Key Scientific Research Project of Higher Education of Henan Province (Grant No. 24B140001), the Doctor Scientific Research Initiate Fund of Anyang Institute of Technology (Grant No. BSJ2022010), the National Basic Research Program of China (Grant No. 2009CB939901), and the Henan Provincial Science and Technology Research Project (Grant No. 232102241016). |
Corresponding Authors:
Li Hou, Lei Shi
E-mail: 20210023@ayit.edu.cn;shil@ustc.edu.cn
|
Cite this article:
Li Hou(侯利), Lei Shi(石磊), Liping Yang(杨利平), Yiqiang Liu(刘义强), Zhitao Li(李志涛), and Lanxiang Meng(孟蓝翔) The B-site ordering in RFe0.5Cr0.5O3 ceramics and its effect on magnetic properties 2024 Chin. Phys. B 33 108101
|
[1] King G and Woodward P M 2010 J. Mater. Chem. 20 5785 [2] Yuan S, Ren W, Hong F, Wang Y, Zhang J, Bellaiche L, Cao S and Cao G 2013 Phys. Rev. B 87 184405 [3] Zhou Z, Guo L, Yang H, Liu Q and Ye F 2014 J. Alloy. Compd. 583 21 [4] Wang S, Wu X, Wang T, Zhang J, Zhang C, Yuan L, Cui X and Lu D 2019 Inorg. Chem. 58 2315 [5] Yin L H, Yang J, Tong P, Luo X, Park C B, Shin K W, Song W H, Dai J M, Kim K H, Zhu X B and Sun Y P 2016 J. Mater. Chem. C 4 11198 [6] Kumar A and Yusuf S M 2015 Phys. Rep. 556 1 [7] Yusuf S M, Kumar A and Yakhmi J V 2009 Appl. Phys. Lett. 95 182506 [8] Mao J, Sui Y, Zhang X, Su Y, Wang X, Liu Z, Wang Y, Zhu R, Wang Y, Liu W and Tang J 2011 Appl. Phys. Lett. 98 192510 [9] Adachi H and Ino H 1999 Nature 401 148 [10] Fita I, Wisniewski A, Puzniak R, Zubov E E, Markovich V and Gorodetsky G 2018 Phys. Rev. B 98 094421 [11] Cao S, Zhao H, Kang B, Zhang J and Ren W 2014 Sci. Rep. 4 5960 [12] Fita I, Wisniewski A, Puzniak R, Markovich V and Gorodetsky G 2016 Phys. Rev. B 93 184432 [13] Yadav K, Kaur G, Sharma M K and Mukherjee K 2020 Phys. Lett. A 384 126638 [14] Yin L H, Yang J, Zhang R R, Dai J M, Song W H and Sun Y P 2014 Appl. Phys. Lett. 104 032904 [15] Pomiro F, Sánchez R D, Cuello G, Maignan A, Martin C and Carbonio R E 2016 Phys. Rev. B 94 134402 [16] Das N, Singh S, Joshi A G, Thirumal M, Reddy V R Gupta L C and Ganguli A K 2017 Inorg. Chem. 56 12712 [17] Rajeswaran B, Mandal P, Saha R, Suard E, Sundaresan A and Rao C N R 2012 Chem. Mater. 24 3591 [18] Fita I, Markovich V, Moskvin A S, Wisniewski A, Puzniak R, Iwanowski P, Martin C, Maignan A, Carbonio R E, Gutowska M U, Szewczyk A and Gorodetsky G 2018 Phys. Rev. B 97 104416 [19] Wu X, Ming C, Shi J, Wang H, West D, Zhang S and Sun Y Y 2022 Chin. Phys. Lett. 39 046101 [20] Baba-Kishi K Z, Woodward P M and Knight K 2001 Ferroelectrics 261 21 [21] Burton B P and Cockayne E 1999 Phys. Rev. B 60 R12542 [22] Sarma D D 2001 Curr. Opin. Solid State Mater. Sci. 5 261 [23] Reyes A M, Arredondo Y and Navarro O 2016 J. Phys. Chem. C 120 4048 [24] De Luca G, Spring J, Bashir U, Campanini M, Totani R, Dominguez C, Zakharova A, Döbeli M, Greber T, Rossell M D, Piamonteze C and Gibert M 2021 APL Mater. 9 081111 [25] Rogado N S, Li J, Sleight A W and Subramanian M A 2005 Adv. Mater. 17 2225 [26] Boudad L, Taibi M, Belayachi W, Abd-Lefdil M and Sajieddine M 2022 Vacuum 201 111103 [27] Yin L H, Yang J, Tong P, Luo X, Song W H, Dai J M, Zhu X B and Sun Y P 2017 Appl. Phys. Lett. 110 192904 [28] Mali B, Nair H S, Heitmann T W, Nhalil H, Antonio D, Gofryk K, Bhandari S R, Ghimire M P and Elizabeth S 2020 Phys. Rev. B 102 014418 [29] Yang J, Cao H, Lu Z, Mo J, Zhou Y, Gao K, Xue X, Xia Y and Liu M 2023 Phys. Status Solidi B 260 2300145 [30] Pazhanivelu V, Suriakarthi K, Balogun M S J T, Murugaraj R and Venkateswaran C 2021 Physica B 607 412717 [31] Mo J, Liu M, Xu S, Xia P, Zhang Q, Shen J and Xia Y 2022 Ceram. Int. 48 31309 [32] Hou L, Shi L, Zhao J, Tong R and Xin Y 2021 J. Phys. Chem. C 125 7950 [33] Andreasson J, Holmlund J, Rauer R, Käll M, Börjesson L, Knee C S, Eriksson A K, Eriksson S G, Rubhausen M and Chaudhury R P 2008 Phys. Rev. B 78 235103 [34] Andreasson J, Holmlund J, Knee C S, Käll M, Börjesson L, Naler S, Backström J, Rübhausen M, Azad A K and Eriksson S G 2007 Phys. Rev. B 75 104302 [35] Xie C, Shi L, Zhou S, Zhao J, Liu H, Li Y and Yao D 2015 Surf. Coat. Technol. 277 222 [36] Bora T and Ravi S 2013 J. Appl. Phys. 114 033906 [37] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241 [38] Moriya T 1960 Phys. Rev. 120 91 [39] ibschütz M, Shtrikman S and Treves D 1967 Phys. Rev. 156 562 [40] Zhou J S, Alonso J A, Pomjakushin V, Goodenough J B, Ren Y, Yan J Q and Cheng J G 2010 Phys. Rev. B 81 214115 [41] Kadomtseva A M, Moskvin A S, Bostrem I G, Vanklin B M and Hafizova N A 1977 Sov. Phys. JETP 72 2286 [42] Ren Y, Palstra T T M, Khomskii D I, Nugroho A A, Menovsky A A and Sawatzky G A 2000 Phys. Rev. B 62 6577 [43] Dasari N, Mandal P, Sundaresan A and Vidhyadhiraja N S 2012 Europhys. Lett. 99 17008 [44] Billoni O V, Pomiro F, Cannas S A, Martin C, Maignan A and Carbonio R E 2016 J. Phys.: Condens. Matter 28 476003 [45] Moskvin A S 2016 J. Magn. Magn. Mater. 400 117 [46] Ruiz-González M L, Cortés-Gil R, Alonso J M, Hernando A, Vallet- Regí M and González-Calbét J M 2006 Chem. Mater. 18 5756 [47] Hou L, Shi L, Zhao J, Zhou S, Pan S, Yuan X and Xin Y 2019 J. Alloy. Compd. 797 363 [48] Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R and Smart R S C 2011 Appl. Surf. Sci. 257 2717 [49] Lippitz A and Hübert T 2005 Surf. Coat. Technol. 200 250 [50] Ma X, Lu P and Wu P 2018 J. Alloy. Compd. 734 22 [51] Aschauer U, Pfenninger R, Selbach S M, Grande T and Spaldin N A 2013 Phys. Rev. B 88 054111 [52] Jiang F, Kojima S, Zhao C and Feng C 2000 J. Appl. Phys. 88 3608 [53] Bai Y, Xia Y, Li H, Han L, Wang Z, Wu X, Lv S, Liu X and Meng J 2012 J. Phys. Chem. C 116 16841 [54] Deng Z, Kang C J, Croft M, Li W, Shen X, Zhao J, Yu R, Jin C, Kotliar G, Liu S, Tyson T A, Tappero R and Greenblatt M 2020 Angew. Chem. Int. Ed. 59 8240 [55] Vasala S and Karppinen M 2015 Prog. Solid State Chem. 43 1 [56] Zhang X W, Wang Q and Gu B L 1991 J. Am. Ceram. Soc. 74 2846 [57] Setter N and Cross L E 1980 J. Mater. Sci. 15 2478 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|