|
|
Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3 |
Yuhang Li(李宇航)1, Pei Zhou(周佩)1, Chi Ding(丁驰)2, Qing Lu(鲁清)2, Xiaomeng Wang(王晓梦)1,†, and Jian Sun(孙建)2,‡ |
1 School of Physics, Ningxia University, Yinchuan 750021, China; 2 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract TaSe$_{3}$ has garnered significant research interests due to its unique quasi-one-dimensional crystal structure, which gives rise to distinctive properties. Using crystal structure search and first-principles calculations, we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe$_{3}$ up to 100 GPa. In addition to the ambient pressure phase ($P2_{1}/m$-I), we identified three high-pressure phases: $P2_{1}/m$-II, Pnma, and Pmma. For the $P2_{1}/m$-I phase, the inclusion of spin-orbit coupling (SOC) results in significant SOC splitting and changes in the band inversion characteristics. Furthermore, band structure calculations for the three high-pressure phases indicate metallic natures, and the electron localization function suggests ionic bonding between Ta and Se atoms. Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa. This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe$_{3}$.
|
Received: 26 June 2024
Revised: 14 August 2024
Accepted manuscript online: 15 August 2024
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304022 and 52361035) and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Xiaomeng Wang, Jian Sun
E-mail: xiaomengwang@nxu.edu.cn;jiansun@nju.edu.cn
|
Cite this article:
Yuhang Li(李宇航), Pei Zhou(周佩), Chi Ding(丁驰), Qing Lu(鲁清), Xiaomeng Wang(王晓梦), and Jian Sun(孙建) Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3 2024 Chin. Phys. B 33 106102
|
[1] Balandin A A, Kargar F, Salguero T T and Lake R K 2022 Mater. Today 55 74 [2] Balandin AA L R and Salguero T T 2022 Appl. Phys. Lett. 121 040401 [3] Brattas L K A, Krogh-Moe J, Songstad J and Pilotti A 1972 Acta Chem. Scand. 26 3441 [4] Dai J, Li M and Zeng X C 2016 Wiley Interdiscip. Rev.-Comput. Mol. Sci. 6 211 [5] Zhao Q, Guo Y, Zhou Y, Yao Z, Ren Z, Bai J and Xu X 2018 Nanoscale 10 3547 [6] Tsuchiya S, Matsubayashi K, Yamaya K, Takayanagi S, Tanda S and Uwatoko Y 2017 New J. Phys. 19 063004 [7] Dai J and Zeng X C 2015 Angew. Chem.-Int. Edit. 54 7572 [8] Kang J, Sahin H, Ozaydin H D, Senger R T and Peeters F M 2015 Phys. Rev. B 92 075413 [9] Huang C, Zhang E Z, Yuan X, Wang W Y, Liu Y W, Zhang C, Ling J W, Liu S S and Xiu F X 2017 Chin. Phys. B 26 067302 [10] Yue L, Xue S J, Li J R, Hu W, Barbour A, Zheng F P, Wang L C, Feng J, Wilkins S B, Mazzoli C, Comin R and Li Y 2020 Nat. Commun. 11 98 [11] Zhu X D, Ning W, Li L J, Ling L S, Zhang R R, Zhang J L, Wang K F, Liu Y, Pi L, Ma Y C, Du H F, Tian M L, Sun Y P, Petrovic C and Zhang Y H 2016 Sci. Rep. 6 26974 [12] Hu Y W, Zheng F P, Ren X, Feng J and Li Y 2015 Phys. Rev. B 91 144502 [13] Nagata S, Kutsuzawa H, Ebisu S, Yamamura H and Taniguchi S 1989 J. Phys. Chem. Solids 50 703 [14] Sambongi T M Y, Tsutsumi K, Shiozaki Y K and Yamaya Y A 1977 J. Phys. Soc. Jpn. 42 1421 [15] Yamamoto M 1978 J. Phys. Soc. Jpn. 45 431 [16] Island J O, Biele R, Barawi M, Clamagirand J M, Ares J R, Sanchez C, van der Zant H S J, Ferrer I J, D’Agosta R and Castellanos-Gomez A 2016 Sci. Rep. 6 22214 [17] Liu H L, Yu X X, Wu K D, Gao Y, Tongay S, Javey A, Chen L D, Hong J W and Wu J Q 2020 Nano Lett. 20 5221 [18] Papadopoulos N, Frisenda R, Biele R, Flores E, Ares J R, Sanchez C, van der Zant H S J, Ferrer I J, D’Agosta R and Castellanos-Gomez A 2018 Nanoscale 10 12424 [19] Kezerashvili R Y and Spiridonova A 2022 Phys. Rev. Research 4 033016 [20] Yu X, Wen X, Zhang W, Yang L, Wu H, Lou X, Xie Z, Liu Y and Chang H 2019 Crystengcomm 21 5586 [21] Xing J, Blawat J, Speer S, Saleheen A I U, Singleton J and Jin R Y 2022 Adv. Quantum Technol. 5 2200094 [22] Liu C, Wu C, Tan X Y, Tao Y, Zhang Y, Li D, Yang J, Yan Q and Chen Y 2023 Nat. Commun. 14 5597 [23] Hyun J, Jeong M Y, Jung M C, et al. 2022 Phys. Rev. B 105 115143 [24] Kargar F, Krayev A, Wurch M, Ghafouri Y, Debnath T, Wickramaratne D, Salguero T T, Lake R K, Bartels L and Balandin A A 2022 Nanoscale 14 6133 [25] King P D C 2021 Nat. Mater. 20 1046 [26] Liang Y, Wang J Y and Peng H L 2021 Matter 4 19 [27] Ma J Z, Nie S M, Gui X, et al. 2022 Nat. Mater. 21 423 [28] Yang X C, Luo X, Gao J J, Jiang Z Z, Wang W, Wang T Y, Si J G, Xi C Y, Song W H and Sun Y P 2021 Phys. Rev. B 104 155106 [29] Lin C, Ochi M, Noguchi R, et al. 2021 Nat. Mater. 20 1168 [30] Yue B, Zhong W, Deng W, Wen T, Wang Y, Yin Y, Shan P, Wang J T, Yu X and Hong F 2023 J. Am. Chem. Soc. 145 1301 [31] Zhong X, Zhang M, Yang L, Qu X, Yang L, Yang J and Liu H 2019 Comput. Mater. Sci. 158 192 [32] Li W, Li X, Zhang X, Yu H, Han F, Bergara A, Lin J, Wu J and Yang G 2023 Physical Chemistry Chemical Physics 25 23502 [33] Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817 [34] Liu C, Shi J, Gao H, Wang J, Han Y, Lu X, Wang H T, Xing D and Sun J 2021 Phys. Rev. Lett. 126 035701 [35] Blöchl P E 1994 Phys. Rev. B 50 17953 [36] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Grimme S 2006 J. Comput. Chem. 27 1787 [39] Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306 [40] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.-Condes. Matter 21 395502 [41] Nomura A, Yamaya K, Takayanagi S, Ichimura K, Matsuura T and Tanda S 2017 Europhys. Lett. 119 17005 [42] Nie S, Xing L, Jin R, Xie W, Wang Z and Prinz F B 2018 Phys. Rev. B 98 125143 [43] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|