Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 106102    DOI: 10.1088/1674-1056/ad6f92
RAPID COMMUNICATION Prev   Next  

Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3

Yuhang Li(李宇航)1, Pei Zhou(周佩)1, Chi Ding(丁驰)2, Qing Lu(鲁清)2, Xiaomeng Wang(王晓梦)1,†, and Jian Sun(孙建)2,‡
1 School of Physics, Ningxia University, Yinchuan 750021, China;
2 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  TaSe$_{3}$ has garnered significant research interests due to its unique quasi-one-dimensional crystal structure, which gives rise to distinctive properties. Using crystal structure search and first-principles calculations, we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe$_{3}$ up to 100 GPa. In addition to the ambient pressure phase ($P2_{1}/m$-I), we identified three high-pressure phases: $P2_{1}/m$-II, Pnma, and Pmma. For the $P2_{1}/m$-I phase, the inclusion of spin-orbit coupling (SOC) results in significant SOC splitting and changes in the band inversion characteristics. Furthermore, band structure calculations for the three high-pressure phases indicate metallic natures, and the electron localization function suggests ionic bonding between Ta and Se atoms. Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa. This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe$_{3}$.
Keywords:  high pressure      transition metal trichalcogenides      phase transition      superconductivity  
Received:  26 June 2024      Revised:  14 August 2024      Accepted manuscript online:  15 August 2024
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  74.25.-q (Properties of superconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304022 and 52361035) and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Xiaomeng Wang, Jian Sun     E-mail:  xiaomengwang@nxu.edu.cn;jiansun@nju.edu.cn

Cite this article: 

Yuhang Li(李宇航), Pei Zhou(周佩), Chi Ding(丁驰), Qing Lu(鲁清), Xiaomeng Wang(王晓梦), and Jian Sun(孙建) Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3 2024 Chin. Phys. B 33 106102

[1] Balandin A A, Kargar F, Salguero T T and Lake R K 2022 Mater. Today 55 74
[2] Balandin AA L R and Salguero T T 2022 Appl. Phys. Lett. 121 040401
[3] Brattas L K A, Krogh-Moe J, Songstad J and Pilotti A 1972 Acta Chem. Scand. 26 3441
[4] Dai J, Li M and Zeng X C 2016 Wiley Interdiscip. Rev.-Comput. Mol. Sci. 6 211
[5] Zhao Q, Guo Y, Zhou Y, Yao Z, Ren Z, Bai J and Xu X 2018 Nanoscale 10 3547
[6] Tsuchiya S, Matsubayashi K, Yamaya K, Takayanagi S, Tanda S and Uwatoko Y 2017 New J. Phys. 19 063004
[7] Dai J and Zeng X C 2015 Angew. Chem.-Int. Edit. 54 7572
[8] Kang J, Sahin H, Ozaydin H D, Senger R T and Peeters F M 2015 Phys. Rev. B 92 075413
[9] Huang C, Zhang E Z, Yuan X, Wang W Y, Liu Y W, Zhang C, Ling J W, Liu S S and Xiu F X 2017 Chin. Phys. B 26 067302
[10] Yue L, Xue S J, Li J R, Hu W, Barbour A, Zheng F P, Wang L C, Feng J, Wilkins S B, Mazzoli C, Comin R and Li Y 2020 Nat. Commun. 11 98
[11] Zhu X D, Ning W, Li L J, Ling L S, Zhang R R, Zhang J L, Wang K F, Liu Y, Pi L, Ma Y C, Du H F, Tian M L, Sun Y P, Petrovic C and Zhang Y H 2016 Sci. Rep. 6 26974
[12] Hu Y W, Zheng F P, Ren X, Feng J and Li Y 2015 Phys. Rev. B 91 144502
[13] Nagata S, Kutsuzawa H, Ebisu S, Yamamura H and Taniguchi S 1989 J. Phys. Chem. Solids 50 703
[14] Sambongi T M Y, Tsutsumi K, Shiozaki Y K and Yamaya Y A 1977 J. Phys. Soc. Jpn. 42 1421
[15] Yamamoto M 1978 J. Phys. Soc. Jpn. 45 431
[16] Island J O, Biele R, Barawi M, Clamagirand J M, Ares J R, Sanchez C, van der Zant H S J, Ferrer I J, D’Agosta R and Castellanos-Gomez A 2016 Sci. Rep. 6 22214
[17] Liu H L, Yu X X, Wu K D, Gao Y, Tongay S, Javey A, Chen L D, Hong J W and Wu J Q 2020 Nano Lett. 20 5221
[18] Papadopoulos N, Frisenda R, Biele R, Flores E, Ares J R, Sanchez C, van der Zant H S J, Ferrer I J, D’Agosta R and Castellanos-Gomez A 2018 Nanoscale 10 12424
[19] Kezerashvili R Y and Spiridonova A 2022 Phys. Rev. Research 4 033016
[20] Yu X, Wen X, Zhang W, Yang L, Wu H, Lou X, Xie Z, Liu Y and Chang H 2019 Crystengcomm 21 5586
[21] Xing J, Blawat J, Speer S, Saleheen A I U, Singleton J and Jin R Y 2022 Adv. Quantum Technol. 5 2200094
[22] Liu C, Wu C, Tan X Y, Tao Y, Zhang Y, Li D, Yang J, Yan Q and Chen Y 2023 Nat. Commun. 14 5597
[23] Hyun J, Jeong M Y, Jung M C, et al. 2022 Phys. Rev. B 105 115143
[24] Kargar F, Krayev A, Wurch M, Ghafouri Y, Debnath T, Wickramaratne D, Salguero T T, Lake R K, Bartels L and Balandin A A 2022 Nanoscale 14 6133
[25] King P D C 2021 Nat. Mater. 20 1046
[26] Liang Y, Wang J Y and Peng H L 2021 Matter 4 19
[27] Ma J Z, Nie S M, Gui X, et al. 2022 Nat. Mater. 21 423
[28] Yang X C, Luo X, Gao J J, Jiang Z Z, Wang W, Wang T Y, Si J G, Xi C Y, Song W H and Sun Y P 2021 Phys. Rev. B 104 155106
[29] Lin C, Ochi M, Noguchi R, et al. 2021 Nat. Mater. 20 1168
[30] Yue B, Zhong W, Deng W, Wen T, Wang Y, Yin Y, Shan P, Wang J T, Yu X and Hong F 2023 J. Am. Chem. Soc. 145 1301
[31] Zhong X, Zhang M, Yang L, Qu X, Yang L, Yang J and Liu H 2019 Comput. Mater. Sci. 158 192
[32] Li W, Li X, Zhang X, Yu H, Han F, Bergara A, Lin J, Wu J and Yang G 2023 Physical Chemistry Chemical Physics 25 23502
[33] Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817
[34] Liu C, Shi J, Gao H, Wang J, Han Y, Lu X, Wang H T, Xing D and Sun J 2021 Phys. Rev. Lett. 126 035701
[35] Blöchl P E 1994 Phys. Rev. B 50 17953
[36] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Grimme S 2006 J. Comput. Chem. 27 1787
[39] Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306
[40] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.-Condes. Matter 21 395502
[41] Nomura A, Yamaya K, Takayanagi S, Ichimura K, Matsuura T and Tanda S 2017 Europhys. Lett. 119 17005
[42] Nie S, Xing L, Jin R, Xie W, Wang Z and Prinz F B 2018 Phys. Rev. B 98 125143
[43] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[1] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
[2] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[3] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[4] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[5] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[6] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[7] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[8] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[9] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[10] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[11] Observation of parabolic electron bands on superconductor LaRu2As2
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077401.
[12] Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity
Ping-Hui Mou(牟平辉), Qing-Quan Jiang(蒋青权), Ke-Jian He(何柯腱), and Guo-Ping Li(李国平). Chin. Phys. B, 2024, 33(6): 060401.
[13] Pressure-induced magnetic phase and structural transition in SmSb2
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2024, 33(6): 066401.
[14] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[15] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
No Suggested Reading articles found!