Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 106102    DOI: 10.1088/1674-1056/ad6f92
RAPID COMMUNICATION Prev   Next  

Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3

Yuhang Li(李宇航)1, Pei Zhou(周佩)1, Chi Ding(丁驰)2, Qing Lu(鲁清)2, Xiaomeng Wang(王晓梦)1,†, and Jian Sun(孙建)2,‡
1 School of Physics, Ningxia University, Yinchuan 750021, China;
2 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  TaSe$_{3}$ has garnered significant research interests due to its unique quasi-one-dimensional crystal structure, which gives rise to distinctive properties. Using crystal structure search and first-principles calculations, we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe$_{3}$ up to 100 GPa. In addition to the ambient pressure phase ($P2_{1}/m$-I), we identified three high-pressure phases: $P2_{1}/m$-II, Pmma, and Pmma. For the $P2_{1}/m$-I phase, the inclusion of spin-orbit coupling (SOC) results in significant SOC splitting and changes in the band inversion characteristics. Furthermore, band structure calculations for the three high-pressure phases indicate metallic natures, and the electron localization function suggests ionic bonding between Ta and Se atoms. Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa. This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe$_{3}$.
Keywords:  high pressure      transition metal trichalcogenides      phase transition      superconductivity  
Received:  26 June 2024      Revised:  14 August 2024      Accepted manuscript online:  15 August 2024
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  74.25.-q (Properties of superconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304022 and 52361035) and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Xiaomeng Wang, Jian Sun     E-mail:  xiaomengwang@nxu.edu.cn;jiansun@nju.edu.cn

Cite this article: 

Yuhang Li(李宇航), Pei Zhou(周佩), Chi Ding(丁驰), Qing Lu(鲁清), Xiaomeng Wang(王晓梦), and Jian Sun(孙建) Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3 2024 Chin. Phys. B 33 106102

[1] Balandin A A, Kargar F, Salguero T T and Lake R K 2022 Mater. Today 55 74
[2] Balandin AA L R and Salguero T T 2022 Appl. Phys. Lett. 121 040401
[3] Brattås L K A, Krogh-Moe J, Songstad J and Pilotti Å 1972 Acta Chem. Scand. 26 3441
[4] Dai J, Li M and Zeng X C 2016 Wiley Interdiscip. Rev.-Comput. Mol. Sci. 6 211
[5] Zhao Q, Guo Y, Zhou Y, Yao Z, Ren Z, Bai J and Xu X 2018 Nanoscale 10 3547
[6] Tsuchiya S, Matsubayashi K, Yamaya K, Takayanagi S, Tanda S and Uwatoko Y 2017 New J. Phys. 19 063004
[7] Dai J and Zeng X C 2015 Angew. Chem.-Int. Edit. 54 7572
[8] Kang J, Sahin H, Ozaydin H D, Senger R T and Peeters F M 2015 Phys. Rev. B 92 075413
[9] Huang C, Zhang E Z, Yuan X, Wang W Y, Liu Y W, Zhang C, Ling J W, Liu S S and Xiu F X 2017 Chin. Phys. B 26 067302
[10] Yue L, Xue S J, Li J R, Hu W, Barbour A, Zheng F P, Wang L C, Feng J, Wilkins S B, Mazzoli C, Comin R and Li Y 2020 Nat. Commun. 11 98
[11] Zhu X D, Ning W, Li L J, Ling L S, Zhang R R, Zhang J L, Wang K F, Liu Y, Pi L, Ma Y C, Du H F, Tian M L, Sun Y P, Petrovic C and Zhang Y H 2016 Sci. Rep. 6 26974
[12] Hu Y W, Zheng F P, Ren X, Feng J and Li Y 2015 Phys. Rev. B 91 144502
[13] Nagata S, Kutsuzawa H, Ebisu S, Yamamura H and Taniguchi S 1989 J. Phys. Chem. Solids 50 703
[14] Sambongi T M Y, Tsutsumi K, Shiozaki Y K and Yamaya Y A 1977 J. Phys. Soc. Jpn. 42 1421
[15] Yamamoto M 1978 J. Phys. Soc. Jpn. 45 431
[16] Island J O, Biele R, Barawi M, Clamagirand J M, Ares J R, Sanchez C, van der Zant H S J, Ferrer I J, D’Agosta R and Castellanos-Gomez A 2016 Sci. Rep. 6 22214
[17] Liu H L, Yu X X, Wu K D, Gao Y, Tongay S, Javey A, Chen L D, Hong J W and Wu J Q 2020 Nano Lett. 20 5221
[18] Papadopoulos N, Frisenda R, Biele R, Flores E, Ares J R, Sanchez C, van der Zant H S J, Ferrer I J, D’Agosta R and Castellanos-Gomez A 2018 Nanoscale 10 12424
[19] Kezerashvili R Y and Spiridonova A 2022 Phys. Rev. Research 4 033016
[20] Yu X, Wen X, Zhang W, Yang L, Wu H, Lou X, Xie Z, Liu Y and Chang H 2019 Crystengcomm 21 5586
[21] Xing J, Blawat J, Speer S, Saleheen A I U, Singleton J and Jin R Y 2022 Adv. Quantum Technol. 5 2200094
[22] Liu C, Wu C, Tan X Y, Tao Y, Zhang Y, Li D, Yang J, Yan Q and Chen Y 2023 Nat. Commun. 14 5597
[23] Hyun J, Jeong M Y, Jung M C, et al. 2022 Phys. Rev. B 105 115143
[24] Kargar F, Krayev A, Wurch M, Ghafouri Y, Debnath T, Wickramaratne D, Salguero T T, Lake R K, Bartels L and Balandin A A 2022 Nanoscale 14 6133
[25] King P D C 2021 Nat. Mater. 20 1046
[26] Liang Y, Wang J Y and Peng H L 2021 Matter 4 19
[27] Ma J Z, Nie S M, Gui X, et al. 2022 Nat. Mater. 21 423
[28] Yang X C, Luo X, Gao J J, Jiang Z Z, Wang W, Wang T Y, Si J G, Xi C Y, Song W H and Sun Y P 2021 Phys. Rev. B 104 155106
[29] Lin C, Ochi M, Noguchi R, et al. 2021 Nat. Mater. 20 1168
[30] Yue B, Zhong W, Deng W, Wen T, Wang Y, Yin Y, Shan P, Wang J T, Yu X and Hong F 2023 J. Am. Chem. Soc. 145 1301
[31] Zhong X, Zhang M, Yang L, Qu X, Yang L, Yang J and Liu H 2019 Comput. Mater. Sci. 158 192
[32] Li W, Li X, Zhang X, Yu H, Han F, Bergara A, Lin J, Wu J and Yang G 2023 Physical Chemistry Chemical Physics 25 23502
[33] Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817
[34] Liu C, Shi J, Gao H, Wang J, Han Y, Lu X, Wang H T, Xing D and Sun J 2021 Phys. Rev. Lett. 126 035701
[35] Blöchl P E 1994 Phys. Rev. B 50 17953
[36] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Grimme S 2006 J. Comput. Chem. 27 1787
[39] Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306
[40] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.-Condes. Matter 21 395502
[41] Nomura A, Yamaya K, Takayanagi S, Ichimura K, Matsuura T and Tanda S 2017 Europhys. Lett. 119 17005
[42] Nie S, Xing L, Jin R, Xie W, Wang Z and Prinz F B 2018 Phys. Rev. B 98 125143
[43] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[1] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[2] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[3] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
[4] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[5] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[6] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[7] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[8] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[9] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[10] Observation of parabolic electron bands on superconductor LaRu2As2
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077401.
[11] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[12] Pressure-induced magnetic phase and structural transition in SmSb2
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2024, 33(6): 066401.
[13] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[14] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
[15] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
No Suggested Reading articles found!