ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Third-order nonlinear wavelength conversion in chalcogenide glass waveguides towards mid-infrared photonics |
Fengbo Han(韩锋博)1,2, Jiaxin Gu(顾佳新)2, Lu Huang(黄璐)1, Hang Wang(王航)1, Yali Huang(黄雅莉)2, Xuecheng Zhou(周学成)1, Shaoliang Yu(虞绍良)2, Zhengqian Luo(罗正钱)1, Zhipeng Dong(董志鹏)1,†, and Qingyang Du(杜清扬)2,‡ |
1 Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China; 2 Zhejiang Laboratory, Hangzhou 311100, China |
|
|
Abstract The increasing demand in spectroscopy and sensing calls for infrared (mid-IR) light sources. Here, we theoretically investigate nonlinear wavelength conversion of Ge$_{28}$Sb$_{12}$Se$_{60}$ chalcogenide glass waveguide in the mid-IR spectral regime. With waveguide dispersion engineering, we predict generation of over an octave wavelength (2.8 μm-5.9 μm) tuning range Raman soliton self-frequency shift, over 2.5 octaves wavelength cover range supercontinuum (1.2 μm-8.0 μm), as well as single soliton Kerr comb generated in suspended Ge$_{28}$Sb$_{12}$Se$_{60}$ waveguide. Our findings evidenced that Ge$_{28}$Sb$_{12}$Se$_{60}$ chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift, supercontinuum spectrum, and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.
|
Received: 27 May 2024
Revised: 05 July 2024
Accepted manuscript online: 19 July 2024
|
PACS:
|
42.65.Dr
|
(Stimulated Raman scattering; CARS)
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105272 and 62305304), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2022J06016 and 2021J05016), the National Key Research and Development Program of China (Grant No. 2021ZD0109904), the Key Research Project of Zhejiang Laboratory (Grant No. 2022PH0AC03), and the Fundamental Research Funds for the Central Universities (Grant No. 20720220109). |
Corresponding Authors:
Zhipeng Dong, Qingyang Du
E-mail: zpdong@xmu.edu.cn;qydu@zhejianglab.edu.cn
|
Cite this article:
Fengbo Han(韩锋博), Jiaxin Gu(顾佳新), Lu Huang(黄璐), Hang Wang(王航), Yali Huang(黄雅莉), Xuecheng Zhou(周学成), Shaoliang Yu(虞绍良), Zhengqian Luo(罗正钱), Zhipeng Dong(董志鹏), and Qingyang Du(杜清扬) Third-order nonlinear wavelength conversion in chalcogenide glass waveguides towards mid-infrared photonics 2024 Chin. Phys. B 33 104207
|
[1] Hu J J, Meyer J and Richardson K 2013 Opt. Mater. Express 3 1571 [2] Milosevic M, Nedeljkovic M and Masaud T 2012 Appl. Phys. Lett. 101 121105 [3] Zou K, Pang K and Song J 2022 Nat. Commun. 13 7662 [4] Rosi F, Miliani R and Braun R 2013 Angew. Chem. 52 5258 [5] Junaid S, Kumar S and Mathez M 2019 Optica 6 702 [6] Luo P and Chen I 2022 Optica 94 5752 [7] Ma P, Choi D and Yu Y 2013 Opt. Express 21 29927 [8] Han Z, Lin P and Singh 2016 Opt. Express 108 141106 [9] Tsay C, Toor F and Gmachl C 2010 Opt. Lett. 35 3324 [10] Nicoletti S, Fedeli J and Fournier M 2019 Silicon Photonics XIV 10923 109230H [11] Chang T, Chen Y and Luo D 2019 Nano Lett. 20 6824 [12] Zhang Y, Wang S and Chen S 2020 Adv. Mater. 32 1808319 [13] Kuyken B, Ideguchi T and Holzner S 2014 Nat. Commun. 6 6310 [14] Luke K, Okawachi Y and Lamont M 2015 Opt. Lett. 21 40 [15] Griffith A, Lau R and Cardenas J 2014 Nat. Commun. 6 6299 [16] Ettabib M, Xu L, Bogris A and Petropoulos P 2015 Opt. Lett. 40 4118 [17] Rong H, Jones R, Liu A and Cohen O 2005 Nature 433 725 [18] Zlatanovic S, Park J, Moro S and Radic S 2010 Nat. Photon. 4 561 [19] Zhou J, Pan W, Qi W, Cao X, Cheng Z and Feng Y 2022 PhotonicX 3 18 [20] Li H, Li X, Zhang S, Yan D, Wang C, Yang Z and Pang Z 2023 Opt. Laser Technol. 163 109336 [21] Huang J, Lu Y, Wu Z, Xie Y, He C and Wu J 2022 Chin. Opt. Lett. 20 031902 [22] Lin H, Luo Z, Gu T, Kimerling L, Wada K, Agarwal A and Hu J 2022 Nanophotonics 7 393 [23] Mtunzi M, Jia H, Hou Y and Yu X 2022 J. Phys. D: Appl. Phys. 57 255101 [24] Eggleton B, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141 [25] Zhang L, Chen J, Gu J, Gao Y, Shen X, Chen Y and Xu T 2021 Chin. Phys. B 30 034210 [26] Wang H, Wu B and Wang X 2015 Chin. Phys. B 25 064207 [27] Yu Y, Gai X, Ma P, Choi D, Yang Z, Wang R, Debbarma S, Madden S and Luther-Davies B 2014 Laser Photon. Rev. 8 792 [28] Gai X, Choi D, Madden S, Yang Z, Wang R and Luther-Davies B 2012 Opt. Lett. 37 3870 [29] Xia D, Yang Z, Zeng P and Li Z 2022 Laser Photon. Rev. 17 2200219 [30] Li Z, Du Q, Wang C, Zou J, Du T, Richardson K, Cai Z, Hu J and Luo Z 2020 Laser Photon. Rev. 15 2000301 [31] Lamont M, Luther-Davies B, Choi D, Madden S and Eggleton B 2008 Opt. Express 16 14938 [32] Karim M, Ahmad H, Ghosh S and Rahman B 2018 J. Appl. Phys. 123 213101 [33] Alekberov R, Mekhtiyeva S and Mammadov S 2024 J. Korean Phys. Soc. 84 694 [34] Zhang X, Chen F, Zhang X and Ji W 2018 Chin. Phys. B 27 084208 [35] Li Z, Han F, Dong Z, Du Q and Luo Z 2021 Opt. Express 30 25356 [36] Xia Y, Qiu C, Zhang X, Gao W, Shu J and Xu Q 2013 Opt. Lett. 38 11224 [37] Godey C, Balakireva I, Coillet A and Chembo Y 2013 Phys. Rev. A 89 063814 [38] Younas U, Sulaiman T and Ren J 2023 Opt. Quantum Electron. 55 72 [39] Trocha P, Ganin D, Karpov M, Pfeiffer M, Kordts A and Krockenberger J 2018 Opt. Lett. 359 887 [40] Han F, Niu Y, Zhang Y, Gong J, Yu S and Du Q 2024 J. Phys. D: Appl. Phys. 57 305107 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|