Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 104207    DOI: 10.1088/1674-1056/ad6557
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Third-order nonlinear wavelength conversion in chalcogenide glass waveguides towards mid-infrared photonics

Fengbo Han(韩锋博)1,2, Jiaxin Gu(顾佳新)2, Lu Huang(黄璐)1, Hang Wang(王航)1, Yali Huang(黄雅莉)2, Xuecheng Zhou(周学成)1, Shaoliang Yu(虞绍良)2, Zhengqian Luo(罗正钱)1, Zhipeng Dong(董志鹏)1,†, and Qingyang Du(杜清扬)2,‡
1 Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China;
2 Zhejiang Laboratory, Hangzhou 311100, China
Abstract  The increasing demand in spectroscopy and sensing calls for infrared (mid-IR) light sources. Here, we theoretically investigate nonlinear wavelength conversion of Ge$_{28}$Sb$_{12}$Se$_{60}$ chalcogenide glass waveguide in the mid-IR spectral regime. With waveguide dispersion engineering, we predict generation of over an octave wavelength (2.8 μm-5.9 μm) tuning range Raman soliton self-frequency shift, over 2.5 octaves wavelength cover range supercontinuum (1.2 μm-8.0 μm), as well as single soliton Kerr comb generated in suspended Ge$_{28}$Sb$_{12}$Se$_{60}$ waveguide. Our findings evidenced that Ge$_{28}$Sb$_{12}$Se$_{60}$ chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift, supercontinuum spectrum, and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.
Keywords:  chalcogenide glass      Raman soliton self-frequency shift      supercontinuum      soliton Kerr comb  
Received:  27 May 2024      Revised:  05 July 2024      Accepted manuscript online:  19 July 2024
PACS:  42.65.Dr (Stimulated Raman scattering; CARS)  
  74.70.Xa (Pnictides and chalcogenides)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105272 and 62305304), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2022J06016 and 2021J05016), the National Key Research and Development Program of China (Grant No. 2021ZD0109904), the Key Research Project of Zhejiang Laboratory (Grant No. 2022PH0AC03), and the Fundamental Research Funds for the Central Universities (Grant No. 20720220109).
Corresponding Authors:  Zhipeng Dong, Qingyang Du     E-mail:  zpdong@xmu.edu.cn;qydu@zhejianglab.edu.cn

Cite this article: 

Fengbo Han(韩锋博), Jiaxin Gu(顾佳新), Lu Huang(黄璐), Hang Wang(王航), Yali Huang(黄雅莉), Xuecheng Zhou(周学成), Shaoliang Yu(虞绍良), Zhengqian Luo(罗正钱), Zhipeng Dong(董志鹏), and Qingyang Du(杜清扬) Third-order nonlinear wavelength conversion in chalcogenide glass waveguides towards mid-infrared photonics 2024 Chin. Phys. B 33 104207

[1] Hu J J, Meyer J and Richardson K 2013 Opt. Mater. Express 3 1571
[2] Milosevic M, Nedeljkovic M and Masaud T 2012 Appl. Phys. Lett. 101 121105
[3] Zou K, Pang K and Song J 2022 Nat. Commun. 13 7662
[4] Rosi F, Miliani R and Braun R 2013 Angew. Chem. 52 5258
[5] Junaid S, Kumar S and Mathez M 2019 Optica 6 702
[6] Luo P and Chen I 2022 Optica 94 5752
[7] Ma P, Choi D and Yu Y 2013 Opt. Express 21 29927
[8] Han Z, Lin P and Singh 2016 Opt. Express 108 141106
[9] Tsay C, Toor F and Gmachl C 2010 Opt. Lett. 35 3324
[10] Nicoletti S, Fedeli J and Fournier M 2019 Silicon Photonics XIV 10923 109230H
[11] Chang T, Chen Y and Luo D 2019 Nano Lett. 20 6824
[12] Zhang Y, Wang S and Chen S 2020 Adv. Mater. 32 1808319
[13] Kuyken B, Ideguchi T and Holzner S 2014 Nat. Commun. 6 6310
[14] Luke K, Okawachi Y and Lamont M 2015 Opt. Lett. 21 40
[15] Griffith A, Lau R and Cardenas J 2014 Nat. Commun. 6 6299
[16] Ettabib M, Xu L, Bogris A and Petropoulos P 2015 Opt. Lett. 40 4118
[17] Rong H, Jones R, Liu A and Cohen O 2005 Nature 433 725
[18] Zlatanovic S, Park J, Moro S and Radic S 2010 Nat. Photon. 4 561
[19] Zhou J, Pan W, Qi W, Cao X, Cheng Z and Feng Y 2022 PhotonicX 3 18
[20] Li H, Li X, Zhang S, Yan D, Wang C, Yang Z and Pang Z 2023 Opt. Laser Technol. 163 109336
[21] Huang J, Lu Y, Wu Z, Xie Y, He C and Wu J 2022 Chin. Opt. Lett. 20 031902
[22] Lin H, Luo Z, Gu T, Kimerling L, Wada K, Agarwal A and Hu J 2022 Nanophotonics 7 393
[23] Mtunzi M, Jia H, Hou Y and Yu X 2022 J. Phys. D: Appl. Phys. 57 255101
[24] Eggleton B, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141
[25] Zhang L, Chen J, Gu J, Gao Y, Shen X, Chen Y and Xu T 2021 Chin. Phys. B 30 034210
[26] Wang H, Wu B and Wang X 2015 Chin. Phys. B 25 064207
[27] Yu Y, Gai X, Ma P, Choi D, Yang Z, Wang R, Debbarma S, Madden S and Luther-Davies B 2014 Laser Photon. Rev. 8 792
[28] Gai X, Choi D, Madden S, Yang Z, Wang R and Luther-Davies B 2012 Opt. Lett. 37 3870
[29] Xia D, Yang Z, Zeng P and Li Z 2022 Laser Photon. Rev. 17 2200219
[30] Li Z, Du Q, Wang C, Zou J, Du T, Richardson K, Cai Z, Hu J and Luo Z 2020 Laser Photon. Rev. 15 2000301
[31] Lamont M, Luther-Davies B, Choi D, Madden S and Eggleton B 2008 Opt. Express 16 14938
[32] Karim M, Ahmad H, Ghosh S and Rahman B 2018 J. Appl. Phys. 123 213101
[33] Alekberov R, Mekhtiyeva S and Mammadov S 2024 J. Korean Phys. Soc. 84 694
[34] Zhang X, Chen F, Zhang X and Ji W 2018 Chin. Phys. B 27 084208
[35] Li Z, Han F, Dong Z, Du Q and Luo Z 2021 Opt. Express 30 25356
[36] Xia Y, Qiu C, Zhang X, Gao W, Shu J and Xu Q 2013 Opt. Lett. 38 11224
[37] Godey C, Balakireva I, Coillet A and Chembo Y 2013 Phys. Rev. A 89 063814
[38] Younas U, Sulaiman T and Ren J 2023 Opt. Quantum Electron. 55 72
[39] Trocha P, Ganin D, Karpov M, Pfeiffer M, Kordts A and Krockenberger J 2018 Opt. Lett. 359 887
[40] Han F, Niu Y, Zhang Y, Gong J, Yu S and Du Q 2024 J. Phys. D: Appl. Phys. 57 305107
[1] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[2] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[3] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[4] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[5] Orientation-dependent depolarization of supercontinuum in BaF2 crystal
Zi-Xi Li(李子熙), Cheng Gong(龚成), Tian-Jiao Shao(邵天骄), Lin-Qiang Hua(华林强), Xue-Bin Bian(卞学滨), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 014212.
[6] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[7] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[8] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[9] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[10] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[11] Active hyperspectral imaging with a supercontinuum laser source in the dark
Zhongyuan Guo(郭中源), Yu Liu(刘煜), Xin Zheng(郑鑫), Ke Yin(殷科). Chin. Phys. B, 2019, 28(3): 034206.
[12] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[13] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[14] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[15] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
No Suggested Reading articles found!