Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107404    DOI: 10.1088/1674-1056/ad7578
SPECIAL TOPIC — Recent progress on kagome metals and superconductors Prev   Next  

Pairing correlation of the kagome-lattice Hubbard model with the nearest-neighbor interaction

Chen Yang(杨晨)1, Chao Chen(陈超)2,1, Runyu Ma(马润宇)1, Ying Liang(梁颖)1, and Tianxing Ma(马天星)1,3,†
1 School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China;
2 Department of Basic Courses, Naval University of Engineering, Wuhan 430033, China;
3 Key Laboratory of Multiscale Spin Physics (Ministry of Education), Beijing Normal University, Beijing 100875, China
Abstract  A recently discovered family of kagome lattice materials, AV3Sb5 (A=K,Rb,Cs), has attracted great interest, especially in the debate over their dominant superconducting pairing symmetry. To explore this issue, we study the superconducting pairing behavior within the kagome-lattice Hubbard model through the constrained path Monte Carlo method. It is found that doping around the Dirac point generates a dominant next-nearest-neighbor-d pairing symmetry driven by on-site Coulomb interaction $U$. However, when considering the nearest-neighbor interaction $V$, it may induce nearest-neighbor-p pairing to become the preferred pairing symmetry. Our results provide useful information to identify the dominant superconducting pairing symmetry in the AV3Sb5 family.
Keywords:  kagome-lattice Hubbard model      superconductivity      pairing symmetry      CPMC  
Received:  15 June 2024      Revised:  23 August 2024      Accepted manuscript online:  30 August 2024
PACS:  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.72.Gh (Hole-doped)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  02.70.Ss (Quantum Monte Carlo methods)  
Fund: Project supported by Beijing Natural Science Foundation (Grant No. 1242022).
Corresponding Authors:  Tianxing Ma     E-mail:  txma@bnu.edu.cn

Cite this article: 

Chen Yang(杨晨), Chao Chen(陈超), Runyu Ma(马润宇), Ying Liang(梁颖), and Tianxing Ma(马天星) Pairing correlation of the kagome-lattice Hubbard model with the nearest-neighbor interaction 2024 Chin. Phys. B 33 107404

[1] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645
[2] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2022 Sci. Adv. 8 eabl4108
[3] Xu L and Yang F 2024 Chin. Phys. B 33 027101
[4] Li Y, Xi W, Dong Z, Yao Z, Yu S and Li J 2024 Chin. Phys. B 33 017404
[5] Wang Y, Liu Y and Hao Z, et al. 2023 Chin. Phys. Lett. 40 037102
[6] Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K and Liu M 2022 Chin. Phys. Lett. 39 047402
[7] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Milinda Abeykoon A M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phy. Rev. Lett. 125 247002
[8] Mine A, Zhong Y, Liu J, Suzuki T, Najafzadeh S, Uchiyama T, Yin J X, Wu X, Shi X, Wang Z, Yao Y and Okazaki K 2024 arXiv:2404.18472v1 [cond-mat.supr-con]
[9] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 046401
[10] Mielke III C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H and Guguchia Z 2022 Nature 602 245
[11] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59
[12] Ding P, Lee C H, Wu X and Thomale R 2022 Phys. Rev. B 105 174518
[13] Ptok A, Kobiałka A, Sternik M, Łazewski J, Jochym P T, Oleś A M and Piekarz P 2022 Phys. Rev. B 105 235134
[14] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[15] Mi X R, Yang K Y, Gan Y H, Zhang L, Wang A F, Chai Y S, Zhou X Y and He M Q 2023 Tungsten 5 300
[16] Xu Y, Ni Z, Liu Y, Ortiz B R, Deng Q, Wilson S D, Yan B, Balents L and Wu L 2022 Nat. Phys. 18 1470
[17] Li H, Oh D, Kang M, Zhao H, Ortiz B R, Oey Y, Fang S, Ren Z, Jozwiak C, Bostwick A, Rotenberg E, Checkelsky J G, Wang Z, Wilson S D, Comin R and Zeljkovic I 2023 Phys. Rev. X 13 031030
[18] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026
[19] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H and Hasan M Z 2019 Nat. Phys. 15 443
[20] Profe J B, Klebl L, Grandi F, Hohmann H, Dürrnagel M, Tschwemmer T, Thomale R and Kennes D M 2024 arXiv:2402.11916v1 [condmat.str-el]
[21] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F and Li S Y 2021 arXiv:2102.08356 [cond-mat.supr-con]
[22] Kang M, Fang S, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Sante D D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301-308
[23] Feng X, Jiang K, Wang Z and Hu J 2021 Science Bulletin 66 1384
[24] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett. 127 217601
[25] Xu H S, Yan Y J, Yin R, Xia W, Fang S, Chen Z, Li Y, Yang W, Guo Y and Feng D L 2021 Phys. Rev. Lett. 127 187004
[26] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y and Yuan H 2021 Sci. China Phys. Mech. Astron. 64 107462
[27] Wulferding D, Lee S, Choi Y, Yin Q, Tu Z, Gong C, Lei H, Yousuf S, Song J, Lee H, Park T and Choi K Y 2022 Phys. Rev. Research 4 023215
[28] Kaufmann J, Steiner K, Scalettar R T, Held K and Janson O 2021 Phys. Rev. B 104 165127
[29] Bulut N, Koshibae W and Maekawa S 2005 Phys. Rev. Lett. 95 037001
[30] Gu Y, Zhang Y, Feng X, Jiang K and Hu J 2022 Phys. Rev. B 105 L100502
[31] Wen C, Zhu X, Hao N, Guo H and Feng S 2022 Phys. Rev. B 105 245131
[32] Wang Z, Jiang Y X, Yin J X, Li Y, Wang G Y, Huang H L, Shao S, Liu J, Zhu P, Shumiya N, Hossain M S, Liu H, Shi Y, Dua Jn, Li X, Chang G, Dai P, Ye Z, Xu G, Wang Y, Zheng H, Jia J, Hasan M Z and Yao Y 2021 Phys. Rev. B 104 075148
[33] Shi H, Jiménez-Hoyos C A, Rodríguez-Guzmán R, Scuseria G E and Zhan S 2014 Phys. Rev. B 89 125129
[34] Zhu X, Han W, Feng S and Guo H 2023 Phys. Rev. Res. 5 023037
[35] Ma T, Yang F, Yao H and Lin H Q 2014 Phys. Rev. B 90 245114
[36] Wu X, Schwemmer T, Müller T, Consiglio A, Sangiovanni G, Sante D D, Iqbal Y, Hanke W, Schnyder A P, Denner M M, Fischer M H, Neupert T and Thomale R 2021 Phys. Rev. Lett. 127 177001
[37] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[38] Kiesel M L and Thomale R 2012 Phys. Rev. B 86 121105
[39] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[40] Yang Q G, Yao M, Wang D and Wang Q H 2024 Phys. Rev. B 109 075130
[41] Liu J and Zhou T 2024 Phys. Rev. B 109 054504
[42] Wilson S D and Ortiz B R 2023 arXiv:0809.0872v1 [cond-mat.suprcon]
[43] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X and Hu J 2023 National Science Review 10 nwac199
[44] Rømer A T, Bhattacharyya S, Valentí R, Christensen M H and Andersen B M 2022 Phys. Rev. B 106 174514
[45] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137
[46] Zhang S, Carlson J and Gubernatis J E 1997 Phys. Rev. Lett. 78 4486
[47] Zhang S, Carlson J and Gubernatis J E 1997 Phys. Rev. B 55 7464
[48] Liu G, Fang S, Zheng X, Huang Z and Lin H 2018 J. Phys.: Condens. Matter 30 445604
[49] Fang S C, Zheng X J, Lin H Q and Huang Z B 2021 J. Phys.: Condens. Matter 33 025601
[50] Wang J, Zhang X, Ma R, Yang G, Castro E V and Ma T 2022 Phys. Rev. B 106 134513
[51] Dai H, Ma R, Zhang X, Guo T and Ma T 2023 Phys. Rev. B 107 245106
[52] Ma T, Huang Z, Hu F and Lin H Q 2011 Phys. Rev. B 84 121410(R)
[1] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[2] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[3] Observation of parabolic electron bands on superconductor LaRu2As2
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077401.
[4] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[5] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[6] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[7] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[8] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[9] Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3
Yuhang Li(李宇航), Pei Zhou(周佩), Chi Ding(丁驰), Qing Lu(鲁清), Xiaomeng Wang(王晓梦), and Jian Sun(孙建). Chin. Phys. B, 2024, 33(10): 106102.
[10] Effects of carrier density and interactions on pairing symmetry in a t2g model
Yun-Xiao Li(李云霄), Wen-Han Xi(西文翰), Zhao-Yang Dong(董召阳), Zi-Jian Yao(姚子健), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新). Chin. Phys. B, 2024, 33(1): 017404.
[11] Multi-band analysis on physical properties of superconducting FeSe films
Jian-Tao Che(车剑韬) and Chen-Xiao Ye(叶晨骁). Chin. Phys. B, 2023, 32(9): 097401.
[12] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[13] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[14] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[15] In-plane uniaxial-strain tuning of superconductivity and charge-density wave in CsV3Sb5
Xiaoran Yang(杨晓冉), Qi Tang(唐绮), Qiuyun Zhou(周秋韵), Huaiping Wang(王怀平), Yi Li(李意), Xue Fu(付雪), Jiawen Zhang(张加文), Yu Song(宋宇), Huiqiu Yuan(袁辉球), Pengcheng Dai(戴鹏程), and Xingye Lu(鲁兴业). Chin. Phys. B, 2023, 32(12): 127101.
No Suggested Reading articles found!