Special Issue:
SPECIAL TOPIC — Recent progress on kagome metals and superconductors
|
SPECIAL TOPIC — Recent progress on kagome metals and superconductors |
Prev
Next
|
|
|
Pairing correlation of the kagome-lattice Hubbard model with the nearest-neighbor interaction |
Chen Yang(杨晨)1, Chao Chen(陈超)2,1, Runyu Ma(马润宇)1, Ying Liang(梁颖)1, and Tianxing Ma(马天星)1,3,† |
1 School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China; 2 Department of Basic Courses, Naval University of Engineering, Wuhan 430033, China; 3 Key Laboratory of Multiscale Spin Physics (Ministry of Education), Beijing Normal University, Beijing 100875, China |
|
|
Abstract A recently discovered family of kagome lattice materials, ${A}\mathrm{V}_{3}\mathrm{Sb}_{5}$ (${A}=\mathrm{K,Rb,Cs}$), has attracted great interest, especially in the debate over their dominant superconducting pairing symmetry. To explore this issue, we study the superconducting pairing behavior within the kagome-lattice Hubbard model through the constrained path Monte Carlo method. It is found that doping around the Dirac point generates a dominant next-nearest-neighbor-d pairing symmetry driven by on-site Coulomb interaction $U$. However, when considering the nearest-neighbor interaction $V$, it may induce nearest-neighbor-p pairing to become the preferred pairing symmetry. Our results provide useful information to identify the dominant superconducting pairing symmetry in the ${A}\mathrm{V}_{3}\mathrm{Sb}_{5}$ family.
|
Received: 15 June 2024
Revised: 23 August 2024
Accepted manuscript online: 30 August 2024
|
PACS:
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
74.72.Gh
|
(Hole-doped)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
02.70.Ss
|
(Quantum Monte Carlo methods)
|
|
Fund: Project supported by Beijing Natural Science Foundation (Grant No. 1242022). |
Corresponding Authors:
Tianxing Ma
E-mail: txma@bnu.edu.cn
|
Cite this article:
Chen Yang(杨晨), Chao Chen(陈超), Runyu Ma(马润宇), Ying Liang(梁颖), and Tianxing Ma(马天星) Pairing correlation of the kagome-lattice Hubbard model with the nearest-neighbor interaction 2024 Chin. Phys. B 33 107404
|
[1] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645 [2] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2022 Sci. Adv. 8 eabl4108 [3] Xu L and Yang F 2024 Chin. Phys. B 33 027101 [4] Li Y, Xi W, Dong Z, Yao Z, Yu S and Li J 2024 Chin. Phys. B 33 017404 [5] Wang Y, Liu Y and Hao Z, et al. 2023 Chin. Phys. Lett. 40 037102 [6] Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K and Liu M 2022 Chin. Phys. Lett. 39 047402 [7] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Milinda Abeykoon A M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phy. Rev. Lett. 125 247002 [8] Mine A, Zhong Y, Liu J, Suzuki T, Najafzadeh S, Uchiyama T, Yin J X, Wu X, Shi X, Wang Z, Yao Y and Okazaki K 2024 arXiv:2404.18472v1[cond-mat.supr-con] [9] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 046401 [10] Mielke III C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H and Guguchia Z 2022 Nature 602 245 [11] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59 [12] Ding P, Lee C H, Wu X and Thomale R 2022 Phys. Rev. B 105 174518 [13] Ptok A, Kobiałka A, Sternik M, Łazewski J, Jochym P T, Olés A M and Piekarz P 2022 Phys. Rev. B 105 235134 [14] Yu S L and Li J X 2012 Phys. Rev. B 85 144402 [15] Mi X R, Yang K Y, Gan Y H, Zhang L, Wang A F, Chai Y S, Zhou X Y and He M Q 2023 Tungsten 5 300 [16] Xu Y, Ni Z, Liu Y, Ortiz B R, Deng Q, Wilson S D, Yan B, Balents L and Wu L 2022 Nat. Phys. 18 1470 [17] Li H, Oh D, Kang M, Zhao H, Ortiz B R, Oey Y, Fang S, Ren Z, Jozwiak C, Bostwick A, Rotenberg E, Checkelsky J G, Wang Z, Wilson S D, Comin R and Zeljkovic I 2023 Phys. Rev. X 13 031030 [18] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026 [19] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H and Hasan M Z 2019 Nat. Phys. 15 443 [20] Profe J B, Klebl L, Grandi F, Hohmann H, Dürrnagel M, Tschwemmer T, Thomale R and Kennes D M 2024 arXiv:2402.11916v1[condmat.str-el] [21] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F and Li S Y 2021 arXiv:2102.08356[cond-mat.supr-con] [22] Kang M, Fang S, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Sante D D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301-308 [23] Feng X, Jiang K, Wang Z and Hu J 2021 Science Bulletin 66 1384 [24] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett. 127 217601 [25] Xu H S, Yan Y J, Yin R, Xia W, Fang S, Chen Z, Li Y, Yang W, Guo Y and Feng D L 2021 Phys. Rev. Lett. 127 187004 [26] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y and Yuan H 2021 Sci. China Phys. Mech. Astron. 64 107462 [27] Wulferding D, Lee S, Choi Y, Yin Q, Tu Z, Gong C, Lei H, Yousuf S, Song J, Lee H, Park T and Choi K Y 2022 Phys. Rev. Research 4 023215 [28] Kaufmann J, Steiner K, Scalettar R T, Held K and Janson O 2021 Phys. Rev. B 104 165127 [29] Bulut N, Koshibae W and Maekawa S 2005 Phys. Rev. Lett. 95 037001 [30] Gu Y, Zhang Y, Feng X, Jiang K and Hu J 2022 Phys. Rev. B 105 L100502 [31] Wen C, Zhu X, Hao N, Guo H and Feng S 2022 Phys. Rev. B 105 245131 [32] Wang Z, Jiang Y X, Yin J X, Li Y, Wang G Y, Huang H L, Shao S, Liu J, Zhu P, Shumiya N, Hossain M S, Liu H, Shi Y, Dua Jn, Li X, Chang G, Dai P, Ye Z, Xu G, Wang Y, Zheng H, Jia J, Hasan M Z and Yao Y 2021 Phys. Rev. B 104 075148 [33] Shi H, Jiménez-Hoyos C A, Rodr íguez-Guzmán R, Scuseria G E and Zhan S 2014 Phys. Rev. B 89 125129 [34] Zhu X, Han W, Feng S and Guo H 2023 Phys. Rev. Res. 5 023037 [35] Ma T, Yang F, Yao H and Lin H Q 2014 Phys. Rev. B 90 245114 [36] Wu X, Schwemmer T, Müller T, Consiglio A, Sangiovanni G, Sante D D, Iqbal Y, Hanke W, Schnyder A P, Denner M M, Fischer M H, Neupert T and Thomale R 2021 Phys. Rev. Lett. 127 177001 [37] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405 [38] Kiesel M L and Thomale R 2012 Phys. Rev. B 86 121105 [39] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135 [40] Yang Q G, Yao M, Wang D and Wang Q H 2024 Phys. Rev. B 109 075130 [41] Liu J and Zhou T 2024 Phys. Rev. B 109 054504 [42] Wilson S D and Ortiz B R 2023 arXiv:0809.0872v1[cond-mat.suprcon] [43] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X and Hu J 2023 National Science Review 10 nwac199 [44] Rømer A T, Bhattacharyya S, Valentí R, Christensen M H and Andersen B M 2022 Phys. Rev. B 106 174514 [45] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137 [46] Zhang S, Carlson J and Gubernatis J E 1997 Phys. Rev. Lett. 78 4486 [47] Zhang S, Carlson J and Gubernatis J E 1997 Phys. Rev. B 55 7464 [48] Liu G, Fang S, Zheng X, Huang Z and Lin H 2018 J. Phys.: Condens. Matter 30 445604 [49] Fang S C, Zheng X J, Lin H Q and Huang Z B 2021 J. Phys.: Condens. Matter 33 025601 [50] Wang J, Zhang X, Ma R, Yang G, Castro E V and Ma T 2022 Phys. Rev. B 106 134513 [51] Dai H, Ma R, Zhang X, Guo T and Ma T 2023 Phys. Rev. B 107 245106 [52] Ma T, Huang Z, Hu F and Lin H Q 2011 Phys. Rev. B 84 121410(R) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|