Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107502    DOI: 10.1088/1674-1056/ad6421
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Polarity-controllable magnetic skyrmion filter

Xiao-Lin Ai(艾啸林)1,†, Hui-Ting Li(李慧婷)2,†, Xue-Feng Zhang(张雪枫)2, Chang-Feng Li(李昌锋)2, Je-Ho Shim(沈帝虎)2,‡, Xiao-Ping Ma(马晓萍)2, and Hong-Guang Piao(朴红光)1,2,§
1 Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China;
2 Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  The skyrmion generator is one of the indispensable components for the future functional skyrmion devices, but the process of generating skyrmion cannot avoid mixing with other magnetic textures, such as skyrmionium and nested skyrmion bags. These mixed magnetic textures will inevitably lead to the blockage of skyrmion transport and even the distortion of data information. Therefore, the design of an efficient skyrmion filter is of great significance for the development of skyrmion-based spintronic devices. In this work, a skyrmion filter scheme is proposed, and the high-efficiency filtering function is demonstrated by micromagnetic simulations. The results show that the filtering effect of the scheme depends on the structure geometry and the spin current density that drives the skyrmion. Based on this scheme, the polarity of the filtered skyrmion can be controlled by switching the magnetization state at the output end, and the "cloning" of the skyrmion can be realized by geometric optimization of the structure. We believe that in the near future, the skyrmion filter will become one of the important components of skyrmion-based spintronic devices in the future.
Keywords:  spintronics      skyrmions      skyrmion filter      skyrmion polarity      skyrmion clone  
Received:  19 May 2024      Revised:  09 July 2024      Accepted manuscript online:  17 July 2024
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  12.39.Dc (Skyrmions)  
  75.78.Cd (Micromagnetic simulations ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12364020), the Scientific and Technological Development Plan of Jilin Province, China (Grant No. 20240101295JC), the Science and Technology Research and Planning Project of Jilin Provincial Department of Education (Grant No. JJKH20230611KJ), and the Applied Foundation Research Project (Talent Funding Project) of Yanbian University (Grant No. ydkj202241).
Corresponding Authors:  Je-Ho Shim, Hong-Guang Piao     E-mail:  shendihu@gmail.com;hgpiao@ybu.edu.cn

Cite this article: 

Xiao-Lin Ai(艾啸林), Hui-Ting Li(李慧婷), Xue-Feng Zhang(张雪枫), Chang-Feng Li(李昌锋), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), and Hong-Guang Piao(朴红光) Polarity-controllable magnetic skyrmion filter 2024 Chin. Phys. B 33 107502

[1] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[2] Zhang X, Ezawa M and Zhou Y 2015 Sci. Rep. 5 9400
[3] Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N and You L 2018 Nano Lett. 18 1180
[4] Yan Z R, Liu Y Z, Guang Y, Yue K, Feng J F, Lake R K, Yu G Q and Han X F 2021 Phys. Rev. Appl. 15 064004
[5] Luo S and You L 2021 APL Mater. 9 050901
[6] Zhang H, Zhu D, Kang W, Zhang Y and Zhao W 2020 Phys. Rev. Appl. 13 054049
[7] Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, Lv W and Zhao W 2016 IEEE Electron Dev. Lett. 37 924
[8] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Kläui M and Beach G S D 2016 Nat. Mater. 15 501
[9] Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Iñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W and Ramesh R 2019 Nature 568 368
[10] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W and Ding H F 2014 Phys. Rev. B 90 174411
[11] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[12] Finazzi M, Savoini M, Khorsand A R, Tsukamoto A, Itoh A, Duò L, Kirilyuk A, Rasing T and Ezawa M 2013 Phys. Rev. Lett. 110 177205
[13] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, Bergmann K V, Kubetzka A and Wiesendanger R 2013 Science 341 636
[14] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[15] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E T and Hoffmann A 2015 Science 349 283
[16] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422
[17] Komineas S and Papanicolaou N 2015 Phys. Rev. B 92 174405
[18] Komineas S and Papanicolaou N 2015 Phys. Rev. B 92 064412
[19] Iwasaki J, Koshibae W and Nagaosa N 2014 Nano Lett. 14 4432
[20] Ma X P, Ai X, Yang X X, Cai M X, Shim J H and Piao H G 2023 J. Magn. Magn. Mater. 581 170665
[21] Zhang X, Zhao G, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep. 5 7643
[22] Zhang X, Zhou Y, Ezawa M, Zhao G P and Zhao W 2015 Sci. Rep. 5 11369
[23] Liang X, Zhang X, Xia J, Ezawa M, Zhao Y, Zhao G and Zhou Y 2020 Appl. Phys. Lett. 116 122402
[24] Zhu D, Kang W, Li S, Huang Y, Zhang X, Zhou Y and Zhao W 2017 IEEE. T. Electron. Dev. 65 87
[25] Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rößler U K, Felser C and Parkin S S P 2017 Nature 548 561
[26] Foster D, Kind C, Ackerman P J, Tai J S B, Dennis M R and Samlyukh I I 2019 Nat. Phys. 15 655
[27] Kind C and Foster D 2021 Phys. Rev. B 103 L100413
[28] Hog S E, Bailly-Reyre A and Diep H T 2018 J. Magn. Magn. Mater. 455 32
[29] Yang H, Chen G, Cotta A A C, N’Diaye A T, Nikolaev S A, Soares E A, Macedo W A A, Liu K, Schmid A K, Fert A and Chshiev M 2018 Nat. Mater. 17 605
[30] Yang H, Liang J and Cui Q 2023 Nat. Rev. Phys. 5 43
[31] Yang H, Thiaville A, Rohart S, Fert A and Chshiev M 2015 Phys. Rev. Lett. 115 267210
[32] Yuan H Y and Wang X R 2016 Sci. Rep. 6 22638
[33] Everschor-Sitte K, Sitte M, Valet T, Abanov A and Sinova J 2017 New J. Phys. 19 092001
[34] Koshibae W and Nagaosa N 2016 Nat. Commun. 5 5148
[35] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Horne N V, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohiüter P, George J-M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotech. 11 444
[36] Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W and Ezawa M 2016 Phys. Rev. B 94 094420
[37] Ran N, Zhao G P, Tang H, Shen L C, Lai P, Xia J, Zhang X and Zhou Y 2017 AIP Adv. 7 025105
[38] Brown B L, Täuber U C and Pleimling M 2018 Phys. Rev. B 97 020405
[39] Chen R and Li Y 2022 ACS Appl. Mater. Interfaces 14 30420
[40] Li L, Luo J, Xia J, Zhou Y, Liu X and Zhao G 2023 Chin. Phys. B 32 017506
[41] Shen L, Li X, Zhao Y, Xia J, Zhao G and Zhou Y 2019 Phys. Rev. Appl. 12 064033
[42] Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N and Tokura Y 2018 Nature 564 95
[43] Peng L, Takagi R, Koshibae W, Shibata K, Nakajima K, Arima T H, Nagaosa N, Seki S, Yu X and Tokura Y 2020 Nat. Nanotechnol. 15 181
[44] Yang S, Zhao Y, Wu K, Chu Z, Xu X, Li X, Akerman J and Zhou Y 2023 Nat. Commun. 14 3406
[45] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652
[46] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Waeyenberge B V 2014 AIP Adv. 4 107133
[47] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[48] Metaxas P J, Jamet J P, Mougin A, Cormier M, Ferré J, Baltz V, Rod- macq B, Dieny B and Stamps R L 2007 Phys. Rev. Lett. 99 217208
[49] Leishman A W D, Menezes R M, Longbons G, Bauer E D, Janoschek M, Honecker D, DeBeer-Schmitt L, White J S, Sokolova A, Milošević M V and Eskildsen M R 2020 Phys. Rev. B 102 104416
[50] Everschor-Sitte K, Masell J, Reeve R M and Kläui M 2018 J. Appl. Phys. 124 240901
[51] Du H and Wang X 2022 Chin. Phys. B 31 087507
[52] Liu J, Wang Z, Xu T, Zhou H, Zhao L, Je S, Im M, Fang L and Jiang W 2022 Chin. Phys. Lett. 39 017501
[1] RKKY interaction in helical higher-order topological insulators
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2024, 33(7): 077503.
[2] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[3] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[4] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[5] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[6] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[7] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[8] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[9] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[10] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[11] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[12] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[13] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[14] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[15] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
No Suggested Reading articles found!