CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Polarity-controllable magnetic skyrmion filter |
Xiao-Lin Ai(艾啸林)1,†, Hui-Ting Li(李慧婷)2,†, Xue-Feng Zhang(张雪枫)2, Chang-Feng Li(李昌锋)2, Je-Ho Shim(沈帝虎)2,‡, Xiao-Ping Ma(马晓萍)2, and Hong-Guang Piao(朴红光)1,2,§ |
1 Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; 2 Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract The skyrmion generator is one of the indispensable components for the future functional skyrmion devices, but the process of generating skyrmion cannot avoid mixing with other magnetic textures, such as skyrmionium and nested skyrmion bags. These mixed magnetic textures will inevitably lead to the blockage of skyrmion transport and even the distortion of data information. Therefore, the design of an efficient skyrmion filter is of great significance for the development of skyrmion-based spintronic devices. In this work, a skyrmion filter scheme is proposed, and the high-efficiency filtering function is demonstrated by micromagnetic simulations. The results show that the filtering effect of the scheme depends on the structure geometry and the spin current density that drives the skyrmion. Based on this scheme, the polarity of the filtered skyrmion can be controlled by switching the magnetization state at the output end, and the "cloning" of the skyrmion can be realized by geometric optimization of the structure. We believe that in the near future, the skyrmion filter will become one of the important components of skyrmion-based spintronic devices in the future.
|
Received: 19 May 2024
Revised: 09 July 2024
Accepted manuscript online: 17 July 2024
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
12.39.Dc
|
(Skyrmions)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12364020), the Scientific and Technological Development Plan of Jilin Province, China (Grant No. 20240101295JC), the Science and Technology Research and Planning Project of Jilin Provincial Department of Education (Grant No. JJKH20230611KJ), and the Applied Foundation Research Project (Talent Funding Project) of Yanbian University (Grant No. ydkj202241). |
Corresponding Authors:
Je-Ho Shim, Hong-Guang Piao
E-mail: shendihu@gmail.com;hgpiao@ybu.edu.cn
|
Cite this article:
Xiao-Lin Ai(艾啸林), Hui-Ting Li(李慧婷), Xue-Feng Zhang(张雪枫), Chang-Feng Li(李昌锋), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), and Hong-Guang Piao(朴红光) Polarity-controllable magnetic skyrmion filter 2024 Chin. Phys. B 33 107502
|
[1] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915 [2] Zhang X, Ezawa M and Zhou Y 2015 Sci. Rep. 5 9400 [3] Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N and You L 2018 Nano Lett. 18 1180 [4] Yan Z R, Liu Y Z, Guang Y, Yue K, Feng J F, Lake R K, Yu G Q and Han X F 2021 Phys. Rev. Appl. 15 064004 [5] Luo S and You L 2021 APL Mater. 9 050901 [6] Zhang H, Zhu D, Kang W, Zhang Y and Zhao W 2020 Phys. Rev. Appl. 13 054049 [7] Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, Lv W and Zhao W 2016 IEEE Electron Dev. Lett. 37 924 [8] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Kläui M and Beach G S D 2016 Nat. Mater. 15 501 [9] Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Iñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W and Ramesh R 2019 Nature 568 368 [10] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W and Ding H F 2014 Phys. Rev. B 90 174411 [11] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901 [12] Finazzi M, Savoini M, Khorsand A R, Tsukamoto A, Itoh A, Duò L, Kirilyuk A, Rasing T and Ezawa M 2013 Phys. Rev. Lett. 110 177205 [13] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, Bergmann K V, Kubetzka A and Wiesendanger R 2013 Science 341 636 [14] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839 [15] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E T and Hoffmann A 2015 Science 349 283 [16] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422 [17] Komineas S and Papanicolaou N 2015 Phys. Rev. B 92 174405 [18] Komineas S and Papanicolaou N 2015 Phys. Rev. B 92 064412 [19] Iwasaki J, Koshibae W and Nagaosa N 2014 Nano Lett. 14 4432 [20] Ma X P, Ai X, Yang X X, Cai M X, Shim J H and Piao H G 2023 J. Magn. Magn. Mater. 581 170665 [21] Zhang X, Zhao G, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep. 5 7643 [22] Zhang X, Zhou Y, Ezawa M, Zhao G P and Zhao W 2015 Sci. Rep. 5 11369 [23] Liang X, Zhang X, Xia J, Ezawa M, Zhao Y, Zhao G and Zhou Y 2020 Appl. Phys. Lett. 116 122402 [24] Zhu D, Kang W, Li S, Huang Y, Zhang X, Zhou Y and Zhao W 2017 IEEE. T. Electron. Dev. 65 87 [25] Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rößler U K, Felser C and Parkin S S P 2017 Nature 548 561 [26] Foster D, Kind C, Ackerman P J, Tai J S B, Dennis M R and Samlyukh I I 2019 Nat. Phys. 15 655 [27] Kind C and Foster D 2021 Phys. Rev. B 103 L100413 [28] Hog S E, Bailly-Reyre A and Diep H T 2018 J. Magn. Magn. Mater. 455 32 [29] Yang H, Chen G, Cotta A A C, N’Diaye A T, Nikolaev S A, Soares E A, Macedo W A A, Liu K, Schmid A K, Fert A and Chshiev M 2018 Nat. Mater. 17 605 [30] Yang H, Liang J and Cui Q 2023 Nat. Rev. Phys. 5 43 [31] Yang H, Thiaville A, Rohart S, Fert A and Chshiev M 2015 Phys. Rev. Lett. 115 267210 [32] Yuan H Y and Wang X R 2016 Sci. Rep. 6 22638 [33] Everschor-Sitte K, Sitte M, Valet T, Abanov A and Sinova J 2017 New J. Phys. 19 092001 [34] Koshibae W and Nagaosa N 2016 Nat. Commun. 5 5148 [35] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Horne N V, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohiüter P, George J-M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotech. 11 444 [36] Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W and Ezawa M 2016 Phys. Rev. B 94 094420 [37] Ran N, Zhao G P, Tang H, Shen L C, Lai P, Xia J, Zhang X and Zhou Y 2017 AIP Adv. 7 025105 [38] Brown B L, Täuber U C and Pleimling M 2018 Phys. Rev. B 97 020405 [39] Chen R and Li Y 2022 ACS Appl. Mater. Interfaces 14 30420 [40] Li L, Luo J, Xia J, Zhou Y, Liu X and Zhao G 2023 Chin. Phys. B 32 017506 [41] Shen L, Li X, Zhao Y, Xia J, Zhao G and Zhou Y 2019 Phys. Rev. Appl. 12 064033 [42] Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N and Tokura Y 2018 Nature 564 95 [43] Peng L, Takagi R, Koshibae W, Shibata K, Nakajima K, Arima T H, Nagaosa N, Seki S, Yu X and Tokura Y 2020 Nat. Nanotechnol. 15 181 [44] Yang S, Zhao Y, Wu K, Chu Z, Xu X, Li X, Akerman J and Zhou Y 2023 Nat. Commun. 14 3406 [45] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652 [46] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Waeyenberge B V 2014 AIP Adv. 4 107133 [47] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152 [48] Metaxas P J, Jamet J P, Mougin A, Cormier M, Ferré J, Baltz V, Rod- macq B, Dieny B and Stamps R L 2007 Phys. Rev. Lett. 99 217208 [49] Leishman A W D, Menezes R M, Longbons G, Bauer E D, Janoschek M, Honecker D, DeBeer-Schmitt L, White J S, Sokolova A, Milošević M V and Eskildsen M R 2020 Phys. Rev. B 102 104416 [50] Everschor-Sitte K, Masell J, Reeve R M and Kläui M 2018 J. Appl. Phys. 124 240901 [51] Du H and Wang X 2022 Chin. Phys. B 31 087507 [52] Liu J, Wang Z, Xu T, Zhou H, Zhao L, Je S, Im M, Fang L and Jiang W 2022 Chin. Phys. Lett. 39 017501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|