Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 104302    DOI: 10.1088/1674-1056/ad6a0c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultrasonic scalpel based on fusiform phononic crystal structure

Sha Wang(王莎)1,2, Junjie Shan(单俊杰)3,†, and Shuyu Lin(林书玉)2,‡
1 Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
2 Shaanxi Key Laboratory of Ultrasonics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
3 National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency, an ultrasonic scalpel based on fusiform phononic crystals (PnCs) is proposed. An accurate theoretical model is constructed, which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance. Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint, which can suppress the corresponding vibrational modes. The vibration characteristics (vibration mode, frequency, and displacement distribution) of the ultrasonic scalpel are analyzed, and the validity of the electromechanical equivalent circuit method is verified. The results indicate that other vibration modes near the working frequency can be isolated. In addition, blades based on fusiform PnCs have a function akin to that of the horn, which enables displacement amplification.
Keywords:  phononic crystals      ultrasonic scalpel      bandgap      vibration characteristics  
Received:  01 June 2024      Revised:  17 July 2024      Accepted manuscript online:  01 August 2024
PACS:  43.40.+s (Structural acoustics and vibration)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.20.+g (General linear acoustics)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62204112, 12174240, and 11874253) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220774).
Corresponding Authors:  Junjie Shan, Shuyu Lin     E-mail:  junjieshan@nju.edu.cn;sylin@snnu.edu.cn

Cite this article: 

Sha Wang(王莎), Junjie Shan(单俊杰), and Shuyu Lin(林书玉) Ultrasonic scalpel based on fusiform phononic crystal structure 2024 Chin. Phys. B 33 104302

[1] Sawaizumi M, Maruyama Y, Onishi K, Iwahira Y and Okada E 1996 Ann. Plas. Surg. 36 124
[2] Zhang S B, Chen Z R, Wu H Q, Li G Z and Wu Y B 2023 Ultrasonics 131 106966
[3] Lee T, Luo W, Li Q C, Demirci H and Guo L J 2017 Small 13 1701555
[4] Schafer M E 2023 IEEE T. Ultrason. Ferr. 70 147
[5] Moon R D C, Srikandarajah N, Clark S, Wilby M J and Pigott T D 2020 Brit. J. Neurosurg 35 775
[6] Lee S H, Nguyen T K, Ong W S, Haaland B, Tay G C A, Tan N C, Tan H K, Ng J C F and Iyer N G 2019 Ann. Surg. Oncol. 26 4414
[7] Bozkurt G, Turri-Zanoni M, Russo F, Elhassan H A, Castelnuovo P, Castelnuovo P and Battaglia P 2019 World Neurosurgery 123 23
[8] Chen X L, Chen X Z, Lu Z H, Wang L, Yang K, Hu J K, Zhang B, Chen Z X, Chen J P and Zhou Z G 2014 Plos One 9 e103330
[9] Sun S, Zhang Q, Zhao C S and Cai J 2014 Oncol. Lett. 8 145
[10] Li J H, Dong X Y, Zhang G H, Guo Z C, Zhang G K and Shi C Y 2021 IEEE Access 9 10951
[11] Ying C, Zhou Z Y and Zhang G H 2005 Ultrasound Med. Biol. 32 415
[12] Kushwaha M S, Halevi P, Dobrzynski L and Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022
[13] Vasseur J O, Deymier P A, Chenni B, Djafari-Rouhani B, Dobrzynski L and Prevost D 2001 Phys. Rev. Lett. 86 3012
[14] Wang Y F, Wang Y Z, Wu B, Chen W Q and Wang Y S 2020 Appl. Mech. Rev. 72 040801
[15] Lu M H, Feng L and Chen Y F 2009 Mater. Today 12 34
[16] Wang C M, Xiao W Q, Wu D H, Wang S, Lin C M, Luo Y Y, Xiao J J, Yao K H and Xu Z H 2020 Appl. Acoust. 166 107352
[17] Zhang Q C, Lee D H, Zheng L, Ma X J, Meyer S I, He L, Ye H, Gong Z, Zhen B, Lai K J and Johnson A T C 2022 Nat. Electron. 5 157
[18] Zhao W, Song T, Tian M, Xu G G, Gao X L and Sun X W 2021 Appl. Phys. A-Mater. 127 490
[19] Wang S and Lin S Y 2019 Ultrasonics 99 105954
[20] Zhang Y F, Yu D L and Wen J H 2017 Extreme Mech. Lett. 12 2
[21] Ruan Y D, Liang X, Hua X Y, Zhang C, Xia H and Li C 2021 Ocean Eng. 225 108804
[22] Vasileiadis T, Varghese J, Babacic V, Gomis-Bresco J, Urrios D N and Graczykowski B 2021 J. Appl. Phys. 129 160901
[23] Lu Q F, Liu C C and Wang P 2022 Compos. Struct. 292 115650
[24] Jensen J S, Sigmund O, Thomsen J J and Bendsøe M P 2002 15th Nordic Seminar on Computational Mechanics, October 18-19 (Aalborg, Denmark) pp. 63-66
[25] Park S, Yan, R F and Matlack K H 2024 J. Acoust. Soc. Am. 155 791
[1] Effect of Lewis acid-base additive on lead-free Cs2SnI6 thin film prepared by direct solution coating process
Saqib Nawaz Khan, Yan Wang(王燕), Lixiang Zhong(钟李祥), Huili Liang(梁会力), Xiaolong Du(杜小龙), and Zengxia Mei(梅增霞). Chin. Phys. B, 2024, 33(8): 087201.
[2] Sensing the heavy water concentration in an H2O—D2O mixture by solid—solid phononic crystals
Mohammadreza Rahimi and Ali Bahrami. Chin. Phys. B, 2024, 33(4): 044301.
[3] Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
Kunqi Huang(黄坤琦), Yiran Lin(林懿然), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2024, 33(10): 104301.
[4] Prediction of a monolayer spin-spiral semiconductor: CoO with a honeycomb lattice
Jie Zhang(张杰), Shunuo Song(宋姝诺), Yan-Fang Zhang(张艳芳),Yu-Yang Zhang(张余洋), Sokrates T. Pantelides, and Shixuan Du(杜世萱). Chin. Phys. B, 2023, 32(8): 087508.
[5] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[6] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[7] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[8] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[9] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[10] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[11] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[12] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[13] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[14] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[15] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
No Suggested Reading articles found!