Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 104205    DOI: 10.1088/1674-1056/ad6257
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Image encryption algorithm based on multiple chaotic systems and improved Joseph block scrambling

Dingkang Mou(牟定康) and Yumin Dong(董玉民)†
College of Computer and Information Science, Chongqing Normal University, Chongqing 400047, China
Abstract  With the rapid development of digital information technology, images are increasingly used in various fields. To ensure the security of image data, prevent unauthorized tampering and leakage, maintain personal privacy, and protect intellectual property rights, this study proposes an innovative color image encryption algorithm. Initially, the Mersenne Twister algorithm is utilized to generate high-quality pseudo-random numbers, establishing a robust basis for subsequent operations. Subsequently, two distinct chaotic systems, the autonomous non-Hamiltonian chaotic system and the tent-logistic-cosine chaotic mapping, are employed to produce chaotic random sequences. These chaotic sequences are used to control the encoding and decoding process of the DNA, effectively scrambling the image pixels. Furthermore, the complexity of the encryption process is enhanced through improved Joseph block scrambling. Thorough experimental verification, research, and analysis, the average value of the information entropy test data reaches as high as 7.999. Additionally, the average value of the number of pixels change rate (NPCR) test data is 99.6101%, which closely approaches the ideal value of 99.6094%. This algorithm not only guarantees image quality but also substantially raises the difficulty of decryption.
Keywords:  mersenne twister algorithm      DNA coding confusion      pixel XOR operation      improved Joseph block scrambling  
Received:  19 June 2024      Revised:  08 July 2024      Accepted manuscript online:  12 July 2024
PACS:  42.30.Va (Image forming and processing)  
  07.05.Pj (Image processing)  
Fund: Project supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202208), the Natural Science Foundation of Chongqing (Grant No. CSTB2023NSCQLZX0139), and the National Natural Science Foundation of China (Grant No. 61772295).
Corresponding Authors:  Yumin Dong     E-mail:  dym@cqnu.edu.cn

Cite this article: 

Dingkang Mou(牟定康) and Yumin Dong(董玉民) Image encryption algorithm based on multiple chaotic systems and improved Joseph block scrambling 2024 Chin. Phys. B 33 104205

[1] Wang X, Liu C and Jiang D 2022 Chaos Soliton. Fract. 164 112625
[2] Huang X, Dong Y and Ye G 2023 Frontiers of Computer Science 17 173804
[3] Su Y, Wang X and Lin S 2022 Chin. Phys. B 31 110503
[4] Zhou Y, Bao L and Chen C L P 2014 Signal Processing 97 172
[5] Lai Q, Wan Z and Zhang H 2022 IEEE Transactions on Neural Networks and Learning Systems 34 7824
[6] Zhou N R, Wu J W and Chen M X 2024 International Journal of Theoretical Physics 63 100
[7] Ye G, Liu M and Yap W S 2023 Nonlinear Dyn. 111 13535
[8] Lai Q and Liu Y 2023 Expert Systems with Applications 223 119923
[9] Zhang Z, Mou J and Banerjee S 2024 Chin. Phys. B 33 020503
[10] Guo Z, Chen S H and Zhou L 2024 Applied Mathematical Modelling 131 49
[11] Lai Q, Yang L and Chen G 2023 IEEE Transactions on Industrial Electronics 2023
[12] Gong L H and Luo H X 2023 Optics & Laser Technology 167 109665
[13] Jiang S X, Li Y and Shi J 2024 Chin. Phys. B 33 040306
[14] Zhou N R, Hu L L and Huang Z W 2024 Expert Systems with Applications 238 122052
[15] Zhou N R, Tong L J and Zou W P 2023 Signal Processing 211 109107
[16] Qasim I M and Mohammed E A 2023 Opt. Commun. 533 129262
[17] Hu M, Li J and Di X 2023 Nonlinear Dyn. 111 2815
[18] Zhou Q, Wang X and Jin M 2023 Optics and Lasers in Engineering 162 107415
[19] Xu S, Wang X and Ye X 2022 Chaos Soliton. Fract. 157 111889
[20] Zhou S, Zhao Z and Wang X 2022 Chaos Soliton. Fract. 161 112380
[21] Wu Y, Zhang L and Berretti S 2022 IEEE Transactions on Industrial Informatics 19 2089
[22] Huang Z W and Zhou N R 2022 Optics & Laser Technology 149 107879
[23] Alexan W, Alexan N and Gabr M 2023 Fractal and Fractional 7 287
[24] Machicao J and Ngo Q Q 2021 Information Sciences 558 1
[25] Chan E Y S and Corless R M 2023 SIAM Review 65 261
[26] Wu A, Cang S and Zhang R 2018 Complexity 2018
[27] Cang S, Wu A and Wang Z 2017 Nonlinear Dyn. 89 2495
[28] Hua Z, Zhou Y and Huang H 2019 Information Sciences 480 403
[29] Shao S, Li J and Shao P 2023 IEEE Access 11 27477
[30] Wang L, Cao Y and Jahanshahi H 2023 Optik 275 170590
[31] Wang X and Sun H 2020 Optics & Laser Technology 122 105854
[32] Yu S S, Zhou N R and Gong L H 2020 Optics and Lasers in Engineering 124 105816
[33] Lai Q, Hu G and Erkan U 2023 Applied Mathematics and Computation 442 127738
[34] Chai X, Zhi X and Gan Z 2021 Signal Processing 183 108041
[35] Zhang J, Yin B and Deng X 2021 Multimedia Tools and Applications 80 27155
[36] Khalil N, Sarhan A and Alshewimy M A M 2021 Optics & Laser Technology 143 107326
[37] Zhang Y Q, He Y and Li P 2020 Optics and Lasers in Engineering 128 106040
[38] Wang X, Liu C and Jiang D 2022 Information Sciences 610 300
[39] Samiullah M, Aslam W and Nazir H 2020 IEEE Access 8 25650
[40] Zhang Q and Han J 2021 Multimedia Tools and Applications 80 13841
[41] Alexan W, ElBeltagy M and Aboshousha A 2022 Symmetry 14 443
[42] Teng L, Wang X and Yang F 2021 Nonlinear Dyn. 105 1859
[43] Elkandoz M T and Alexan W 2022 Multimedia Tools and Applications 81 25497
[44] Alexan W, Elkandoz M and Mashaly M 2023 IEEE Access 11 11541
[1] Single exposure passive three-dimensional information reconstruction based on an ordinary imaging system
Shen-Cheng Dou(窦申成), Fan Liu(刘璠), Hu Li(李虎), Xu-Ri Yao(姚旭日), Xue-Feng Liu(刘雪峰), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2023, 32(11): 114204.
[2] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[3] Defogging computational ghost imaging via eliminating photon number fluctuation and a cycle generative adversarial network
Yuge Li(李玉格) and Deyang Duan(段德洋). Chin. Phys. B, 2023, 32(10): 104203.
[4] Optical encryption scheme based on spread spectrum ghost imaging
Jin-Fen Liu(刘进芬), Yue Dong(董玥), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(7): 074202.
[5] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[6] Micro sliding friction model considering periodic variation stress distribution of contact surface and experimental verification
Sheng-Hao Lu(卢晟昊), Jing-Yu Han(韩靖宇), and Shao-Ze Yan(阎绍泽). Chin. Phys. B, 2023, 32(4): 044602.
[7] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[8] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[9] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[10] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[11] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[12] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[13] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[14] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[15] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
No Suggested Reading articles found!