Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107101    DOI: 10.1088/1674-1056/ad655a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optimized numerical density functional theory calculation of rotationally symmetric jellium model systems

Guangdi Zhang(张广迪)1, Li Mao(毛力)1,2,†, and Hongxing Xu(徐红星)1,2,3,4,‡
1 School of Physics and Technology, Wuhan University, Wuhan 430070, China;
2 Wuhan Institute of Quantum Technology, Wuhan 430205, China;
3 School of Microelectronics, Wuhan University, Wuhan 430072, China;
4 Henan Academy of Sciences, Zhengzhou 450046, China
Abstract  In real space density functional theory calculations, the effective potential depends on the electron density, requiring self-consistent iterations, and numerous integrals at each step, making the process time-consuming. In our research, we propose an optimization method to expedite density functional theory (DFT) calculations for systems with large aspect ratios, such as metallic nanorods, nanowires, or scanning tunneling microscope tips. This method focuses on employing basis set to expand the electron density, Coulomb potential, and exchange-correlation potential. By precomputing integrals and caching redundant results, this expansion streamlines the integration process, significantly accelerating DFT computations. As a case study, we have applied this optimization to metallic nanorod systems of various radii and lengths, obtaining corresponding ground-state electron densities and potentials.
Keywords:  density functional theory      basis set      integrals precomputation      nanorod  
Received:  21 May 2024      Revised:  11 July 2024      Accepted manuscript online:  19 July 2024
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  02.60.Pn (Numerical optimization)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0211303) and the National Natural Science Foundation of China (Grant No. 91850207).
Corresponding Authors:  Li Mao, Hongxing Xu     E-mail:  maoli@whu.edu.cn;hxxu@whu.edu.cn

Cite this article: 

Guangdi Zhang(张广迪), Li Mao(毛力), and Hongxing Xu(徐红星) Optimized numerical density functional theory calculation of rotationally symmetric jellium model systems 2024 Chin. Phys. B 33 107101

[1] Engel E 2011 Density functional theory (Berlin: Springer) pp. 109-169
[2] Li Z Z 2002 Solid State Theory (Beijing: Higher Education Press) pp. 329-341 (in Chinese)
[3] Burke K 2012 J. Chem. Phys. 136 150901
[4] Argaman N and Makov G 2000 Am. J. Phys. 68 69
[5] Runge E and Gross E K 1984 Phys. Rev. Lett. 52 997
[6] Marques M A and Gross E K 2004 Annu. Rev. Phys. Chem. 55 427
[7] Jia W L, Cao Z Y, Wang L, Fu J Y, Chi X B, Gao W G and Wang L W 2013 Comput. Phys. Commun. 184 9
[8] Jia W L, Fu J Y, Cao Z Y, Wang L, Chi X B, Gao W G and Wang L W 2013 J. Comput. Phys. 251 102
[9] Nitsche M A, Ferreria M, Mocskos E E and Gonzalez Lebrero M C 2014 J. Chem. Theory Comput. 10 959
[10] Ratcliff L E, Degomme A, Flores-Livas J A, Goedecker S and Genovese L 2018 J. Phys.: Condens. Matter 30 095901
[11] Das S, Motamarri P, Subramanian V, Rogers D M and Gavini V 2022 Comput. Phys. Commun. 280 108473
[12] Politzer P and Seminario J M 1995 Modern density functional theory: a tool for chemistry (Amsterdam: Elsevier) pp. 3-11
[13] Ghosh S K and Pal T 2007 Chem. Rev. 107 4797
[14] Romero I, Aizpurua J, Bryant G W and De Abajo F J G 2006 Opt. Express 14 9988
[15] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
[16] Baumberg J J, Aizpurua J, Mikkelsen M H and Smith D R 2019 Nat. Mater. 18 668
[17] Benz F, Schmidt M K, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, De Nijs B, Esteban R, Aizpurua J and Baumberg J J 2016 Science 354 726
[18] Hao E and Schatz G C 2004 J. Chem. Phys. 120 357
[19] Xu H X, Bjerneld E J, Kll M and Brjesson L 1999 Phys. Rev. Lett. 83 4357
[20] Michaels A M, Jiang J and Brus L 2000 J. Phys. Chem. B 104 11965
[21] Chen H J, Shao L, Li Q and Wang J F 2013 Chem. Soc. Rev. 42 2679
[22] Pines D 1953 Phys. Rev. 92 626
[23] Hopfield J 1958 Phys. Rev. 112 1555
[24] Elson J and Ritchie R 1971 Phys. Rev. B 4 4129
[25] Waks E and Sridharan D 2010 Phys. Rev. A 82 043845
[26] Li Z P and Xu H X 2007 J. Quant. Spectrosc. Radiat. Transfer 103 394
[27] Flatau P J, Fuller K A and Mackowski D W 1993 Appl. Opt. 32 3302
[28] Futamata M, Maruyama Y and Ishikawa M 2003 J. Phys. Chem. B 107 7607
[29] Mao L, Li Z P, Wu B and Xu H X 2009 Appl. Phys. Lett. 94 243102
[30] Zuloaga J, Prodan E and Nordlander P 2009 Nano Lett. 9 887
[31] Suo P F, Mao L, Shi J and Xu H X 2022 Nanomaterials 12 1746
[32] Magonov S N and Whangbo M H 2008 Surface analysis with STM and AFM: experimental and theoretical aspects of image analysis (New York: John Wiley & Sons) pp. 1-56
[33] Besenbacher F, Brorson M, Clausen B S, Helveg S, Hinnemann B, Kibsgaard J, Lauritsen J V, Moses P G, Nrskov J K and Topse H 2008 Catal. Today 130 86
[34] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[35] Perdew J P, Ruzsinszky A, Tao J, Staroverov V N, Scuseria G E and Csonka G I 2005 J. Chem. Phys. 123 062201
[36] Neese F, Wennmohs F, Hansen A and Becker U 2009 Chem. Phys. 356 98
[37] Hu W, Lin L and Yang C 2015 J. Chem. Phys. 143 124110
[38] Shimojo F, Kalia R K, Nakano A and Vashishta P 2001 Comput. Phys. Commun. 140 303
[39] Meng L, Yam C, Koo S, Chen Q, Wong N and Chen G 2012 J. Chem. Theory Comput. 8 1190
[40] Yam C, Meng L, Chen G, Chen Q and Wong N 2011 Phys. Chem. Chem. Phys. 13 14365
[41] Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S and Seifert G 1998 Phys. Rev. B 58 7260
[42] Elstner M and Seifert G 2014 Philos. Trans. R. Soc. A 372 20120483
[43] Koskinen P and Mkinen V 2009 Comput. Mater. Sci. 47 237
[44] Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Mart C, Simon A and Rapacioli M 2020 Adv. Phys. X 5 1710252
[45] Liu T X, Mao L, Pistol M E and Pryor C 2022 J. Phys.: Condens. Matter 34 125901
[46] Liu T X, Pistol M E, Pryor C and Mao L 2022 Comput. Mater. Sci. 211 111479
[47] Cui Q and Elstner M 2014 Phys. Chem. Chem. Phys. 16 14368
[48] Thiel W 2014 Wires. Comput. Mol. Sci. 4 145
[49] Mehta N, Casanova-Pez M and Goerigk L 2018 Phys. Chem. Chem. Phys. 20 23175
[50] Zhang G D, Mao L and Xu H X 2023 Acta Phys. Sin. 72 180302 (in Chinese)
[51] Schleder G R, Padilha A C, Acosta C M, Costa M and Fazzio A 2019 J. Phys. Mater. 2 032001
[52] Jinnouchi R and Asahi R 2017 J. Phys. Chem. Lett. 8 4279
[53] Ulissi Z W, Medford A J, Bligaard T and Nrskov J K 2017 Nat. Commun. 8 14621
[54] Faber F A, Hutchison L, Huang B, Gilmer J, Schoenholz S S, Dahl G E, Vinyals O, Kearnes S, Riley P F and Von Lilienfeld O A 2017 J. Chem. Theory Comput. 13 5255
[55] Dragoni D, Daff T D, Csnyi G and Marzari N 2018 Phys. Rev. Mater. 2 013808
[56] Wei J, Chu X, Sun X Y, Xu K, Deng H X, Chen J G, Wei Z M and Lei M 2019 InfoMat 1 338
[57] Hafner J 2008 J. Comput. Chem. 29 2044
[58] Marques M A, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
[59] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16, Revision C.01 Gaussian Inc., Wallingford CT
[60] Fonseca Guerra C, Snijders J, Te Velde G T and Baerends E J 1998 Theor. Chem. Acc. 99 391
[61] Parr R G, Ceperley D M and Alder B J 1982 Phys. Rev. Lett. 45 95
[62] Russier V and Badiali J 1989 Phys. Rev. B 39 13193
[63] Brack M 1993 Rev. Mod. Phys. 65 677
[1] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound Vas
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules
C. S. Gomes, F. E. Jorge, and A. Canal Neto. Chin. Phys. B, 2024, 33(8): 083101.
[4] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[5] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[6] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[7] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[8] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[9] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[10] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[11] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[12] All-electron ZORA triple zeta basis sets for the elements Cs-La and Hf-Rn
Antônio Canal Neto, Francisco E. Jorge, and Henrique R. C. da Cruz. Chin. Phys. B, 2023, 32(9): 093101.
[13] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋). Chin. Phys. B, 2023, 32(9): 096303.
[14] Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory
Lei-Lei Tang(唐雷雷), Shun-Ping Shi(史顺平), Yong Song(宋永), Jia-Bao Hu(胡家宝), Kai Diao(刁凯), Jing Jiang(蒋静), Zhan-Jiang Duan(段湛江), and De-Liang Chen(陈德良). Chin. Phys. B, 2023, 32(6): 066106.
[15] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
No Suggested Reading articles found!